Mostrando 1 - 20 Resultados de 218 Para Buscar 'Bank Band', tiempo de consulta: 0.34s Limitar resultados
  1. 1
  2. 2
    “…The aim of this research is to provide an end to end working solution that will enable autonomous transaction and task processing for banking. Method We illustrate the use case for task delegation with the aid of risk graphs, risk bands and finite state machines. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 3
    por Bai, C., Wang, D., Li, C., Jin, D., Li, C., Guan, W., Ma, Y.
    Publicado 2011
    “…According to karyotyping and G-banding, the diploid rate in the cell bank was 97.62±2.12%. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 4
  5. 5
    “…However, as most algorithms used a broad frequency band, the discrimination from multiple sub-bands were not fully utilized. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 6
    “…Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 7
    “…The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 8
    “…Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 9
  10. 10
    por Ueda, Kazuo, Nakajima, Yoshitaka
    Publicado 2017
    “…The peripheral auditory system functions like a frequency analyser, often modelled as a bank of non-overlapping band-pass filters called critical bands; 20 bands are necessary for simulating frequency resolution of the ear within an ordinary frequency range of speech (up to 7,000 Hz). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 11
  12. 12
    “…Six accessions were sampled both before and after a standard regeneration. 30 plants of each of 50 accessions plus 6 regeneration populations included in the study were characterised with AFLPs, using scores for 103 polymorphic bands. It was shown that the genetic changes as a result of standard gene bank regenerations, as measured by AFLPs, are of a comparable magnitude as the differences between some of the more similar accessions. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Texto
  13. 13
    “…The segmented epochs are then decomposed into six wavelet sub-bands (WSBs) using OWFB. We extract the signal fractional dimension (SFD) and log-energy (LOGE) features from all six WSBs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 14
    “…This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 15
  16. 16
    “…This result was corresponding to the result obtained from in silico analysis of GenBank sequences. Use of LITS-MG primer was expectedly resulted in a single band including ITS1, 5.8s and partial ITS2 product for L. tropica which is appropriate for following molecular studies such as sequencing or restriction analysis. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 17
    “…The norm features are computed from six sub-bands coefficients of optimal wavelet filter bank and fed to various supervised machine learning classifiers. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 18
    “…Dried blood spot (DBS) is a robust potential alternative sample source for epidemiological studies & bio banking. A stable source of genomic DNA (gDNA) is required for long term storage in bio bank for its downstream applications. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 19
  20. 20
    “…In order to solve the problem, a discriminative and multi-scale filter bank tangent space mapping (DMFBTSM) algorithm is proposed in this article to design the subject-specific Filter Bank (FB) so as to effectively recognize multiclass MI tasks. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS