Mostrando 241 - 260 Resultados de 1,125 Para Buscar 'Deep house', tiempo de consulta: 0.19s Limitar resultados
  1. 241
  2. 242
  3. 243
    “…This paper explored our hypothesis that sRNA (18∼30 bp) deep sequencing technique can be used as an efficient strategy to identify microorganisms other than viruses, such as prokaryotic and eukaryotic pathogens. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 244
  5. 245
  6. 246
  7. 247
  8. 248
  9. 249
  10. 250
  11. 251
    “…In this study, we aimed to evaluate the accuracy and efficacy of the 3-dimensional (3D) MRI segmentation for RCT using a deep learning algorithm. METHODS: A 3D U-Net convolutional neural network (CNN) was developed to detect, segment, and visualize RCT lesions in 3D, using MRI data from 303 patients with RCTs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 252
  13. 253
    “…METHODS: We developed a deep learning–based automatic detection (DLAD) algorithm using 54c221 normal CRs and 6768 CRs with active pulmonary tuberculosis that were labeled and annotated by 13 board-certified radiologists. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 254
    “…We then demonstrated the insignificant impact of familial relationship and ethnicity using an in-house and public database. Lastly, we performed deep DNA sequencing of urinary cell pellets from 32 biopsy-matched samples representing two pathology groups: acute rejection (AR, 11 samples) and acute tubular injury (ATI, 12 samples) and 9 samples with no pathology. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 255
  16. 256
  17. 257
    “…Deep inspiration breath‐hold (DIBH) radiotherapy for left‐sided breast cancer can reduce cardiac exposure and internal motion. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 258
  19. 259
    “…BACKGROUND AND PURPOSE: Reducing trismus in radiotherapy for head and neck cancer (HNC) is important. Automated deep learning (DL) segmentation and automated planning was used to introduce new and rarely segmented masticatory structures to study if trismus risk could be decreased. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 260
Herramientas de búsqueda: RSS