Mostrando 301 - 320 Resultados de 1,125 Para Buscar 'Deep house', tiempo de consulta: 0.19s Limitar resultados
  1. 301
  2. 302
    por McDaniel, Cassidi C., Chou, Chiahung
    Publicado 2022
    “…INTRODUCTION: Evidence is needed for 30-day readmission risk factors (clinical factors and social needs) among patients with diabetes in the Deep South. To address this need, our objectives were to identify risk factors associated with 30-day readmissions among this population and determine the added predictive value of considering social needs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 303
  4. 304
    “…For each module, state-of-the-art deep learning models were applied. We trained and evaluated the models using 1040 in-house Japanese computed tomography (CT) reports annotated by medical experts. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 305
    “…We compared cortical and sub-cortical volume between groups across multiple locations using our in-house U-Net++ deep learning-based automatic segmentation tool. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 306
  7. 307
    “…The present work implemented the deep inspiration breath hold technique (DIBH) with surface guided radiation therapy (SGRT) on closed-bore linacs and investigated the correlation between SGRT data and internal target position. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 308
  9. 309
  10. 310
  11. 311
  12. 312
    “…BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 313
    “…Here, we investigate the spatiotemporal dynamics of holistic processing for faces, bodies and houses (adopted as control non-social category), by applying deep learning to high-density electroencephalographic signals (EEG) at source-level. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 314
  15. 315
  16. 316
    “…This prospective study evaluated the diagnostic accuracy of a deep learning algorithm developed using mydriatic retinal images by the Singapore Eye Research Institute, commercially available as Zeiss VISUHEALTH-AI DR, on images captured by field workers on a Zeiss Visuscout(®) 100 non-mydriatic handheld camera from people with diabetes in a house-to-house cross-sectional study across 20 regions in India. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 317
  18. 318
  19. 319
    “…We performed a simulation study using a patient case, a real patient study with three liver cancer patient cases, and a phantom experimental study using data acquired on an in-house small animal MR scanner. We compared the performance of the proposed method with those of the Fourier transform method, a tight-frame based Compressive Sensing method, and a deep learning method with a patient-generic manifold as the image prior. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 320
Herramientas de búsqueda: RSS