Mostrando 221 - 240 Resultados de 16,685 Para Buscar 'Linear Time Base', tiempo de consulta: 0.41s Limitar resultados
  1. 221
  2. 222
  3. 223
    “…Hence, in order to improve the accuracy of bus single-trip time prediction, five prediction algorithms including LSTM (Long Short-term Memory), LR (Linear Regression), KNN (K-Nearest Neighbor), XGBoost (Extreme Gradient Boosting), and GRU (Gate Recurrent Unit) are used and examined as the base models, and three ensemble models are further constructed by using various ensemble methods including Random Forest (bagging), AdaBoost (boosting), and Linear Regression (stacking). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 224
    “…In order to solve the problem of limited linearity and frame rate in the large array infrared (IR) readout integrated circuit (ROIC), a high-linearity and high-speed readout method based on adaptive offset compensation and alternating current (AC) enhancement is proposed in this paper. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 225
    “…The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 226
    “…Using the multivariate adaptive regression splines (MARS) algorithm, these relationships are identified directly from the data. Next, the non-linear redundancy relationships are linearized to derive a local time-dependent fault signature matrix. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 227
    “…Here we explore the utility of a deconvolution approach based on the assumption that FFR(ENV) and FFR(TFS) reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 228
  9. 229
  10. 230
    “…This paper explores gold nanoparticle (GNP) modified copper oxide nanowires(CuO NWs)based electrode grown on copper foil for non-enzymatic glucose detection in a wide linear ranging up to 31.06 mM, and 44.36 mM at 0.5 M NaOH and 1 M NaOH concentrations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 231
    “…This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 232
    por Miller, Joel
    Publicado 1982
    “…Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com­ plexes to nonstoichiometric transition metal coordination complexes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
  13. 233
    “…We show how DL can be employed in the imputation of multivariate time series. We use a structured dictionary, which is comprised of one block for each time series and a common block for all the time series. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 234
    por Zhang, Ming, Liu, Lutao, Diao, Ming
    Publicado 2016
    “…The classifier is Elman neural network (ENN), and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA), image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD) image of the received data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 235
  16. 236
  17. 237
  18. 238
  19. 239
    “…Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 240
    “…Our second model (trained with Surrogate Gradient Descent method) shows that non-linear decoding of the linearly extracted temporal features through spiking neurons not only achieves promising results, but also offers low computation-overhead by significantly reducing the number of neurons compared to the popular LSM based models—more than 40x reduction with respect to the recent spiking model we compare with. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS