-
41por Sossi, Paolo A., Stotz, Ingo L., Jacobson, Seth A., Morbidelli, Alessandro, O’Neill, Hugh St.C.“…Our model implies that a heliocentric gradient in composition was present in the protoplanetary disc and that planetesimals formed rapidly within ~1 Myr, in accord with radiometric volatile depletion ages of the Earth.…”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
42por Güdel, Manuel“…Before that time, however, rotation periods and their evolution depend on the initial rotation period of a star after it has lost its protostellar/protoplanetary disk. This non-unique rotational evolution implies similar non-unique evolutions for stellar winds and for the stellar high-energy output. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
43por Parker, Richard J.“…It is within these circumstellar, or protoplanetary, discs that the first stages of planet formation occur. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
44“…This is similar to the observed lifetimes of extrasolar protoplanetary disks.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
45por Johansen, Anders, Ronnet, Thomas, Bizzarro, Martin, Schiller, Martin, Lambrechts, Michiel, Nordlund, Åke, Lammer, Helmut“…Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites—formed by melting of dust aggregate pebbles or in impacts between planetesimals—have similar sizes. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
46“…This bimodality suggests that sub‐Neptunes are mostly rocky planets that were born with primary atmospheres a few percent by mass accreted from the protoplanetary nebula. Planets above the radius gap were able to retain their atmospheres (“gas‐rich super‐Earths”), while planets below the radius gap lost their atmospheres and are stripped cores (“true super‐Earths”). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
47por Danger, G., Vinogradoff, V., Matzka, M., Viennet, J-C., Remusat, L., Bernard, S., Ruf, A., Le Sergeant d’Hendecourt, L., Schmitt-Kopplin, P.“…Here, we explore the evolution of organic analogs of protostellar/protoplanetary disk material once accreted and submitted to aqueous alteration at 150 °C. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
48“…Although COMs have already been detected in different astrophysical environments (such as interstellar clouds, protostars, and protoplanetary disks) and in comets, the physical–chemical mechanisms underlying their formation are not yet fully understood. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
49por Torrano, Zachary A., Schrader, Devin L., Davidson, Jemma, Greenwood, Richard C., Dunlap, Daniel R., Wadhwa, Meenakshi“…We also infer that these parent bodies formed from precursor materials that shared similar isotopic compositions, which may indicate formation in regions of the protoplanetary disk that were in close proximity to each other.…”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
50por Espaillat, C. C., Robinson, C. E., Romanova, M. M., Thanathibodee, T., Wendeborn, J., Calvet, N., Reynolds, M., Muzerolle, J.“…Magnetospheric accretion models predict that matter from protoplanetary disks accretes onto stars via funnel flows, which follow stellar magnetic field lines and shock on the stellar surfaces(1–3), leaving hot spots with density gradients(4–6). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
51por Schrader, Devin L., Davidson, Jemma, McCoy, Timothy J., Zega, Thomas J., Russell, Sara S., Domanik, Kenneth J., King, Ashley J.“…Relatively reducing conditions led to the formation of troilite during: (1) chondrule formation in the protoplanetary disk (i.e., pristine chondrites) and (2) parent body thermal alteration (i.e., LL4 to LL6, CR1, CM, and CY chondrites). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
52por Bekaert, David V., Auro, Maureen, Shollenberger, Quinn R., Liu, Ming-Chang, Marschall, Horst, Burton, Kevin W., Jacobsen, Benjamin, Brennecka, Gregory A., McPherson, Glenn J., von Mutius, Richard, Sarafian, Adam, Nielsen, Sune G.“…Based on numerical modeling of 50V–(10)Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.…”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
53por Borlina, Cauê S., Weiss, Benjamin P., Bryson, James F. J., Bai, Xue-Ning, Lima, Eduardo A., Chatterjee, Nilanjan, Mansbach, Elias N.“…Astronomical observations and isotopic measurements of meteorites suggest that substructures are common in protoplanetary disks and may even have existed in the solar nebula. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
54por Nie, Nicole X., Chen, Xin-Yang, Hopp, Timo, Hu, Justin Y., Zhang, Zhe J., Teng, Fang-Zhen, Shahar, Anat, Dauphas, Nicolas“…Chondrites display isotopic variations for moderately volatile elements, the origin of which is uncertain and could have involved evaporation/condensation processes in the protoplanetary disk, incomplete mixing of the products of stellar nucleosynthesis, or aqueous alteration on parent bodies. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
55“…We suggest that the different HSE abundances among the CC-iron cores are related to the spatial distribution of refractory metal nugget–bearing calcium aluminum–rich inclusions (CAIs) in the protoplanetary disk. CAIs may have been transported to the outer solar system and distributed heterogeneously within the first million years of solar system history.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
56“…A high 483 nm to 580 nm absorption ratio points to an “R” chirality excess in hemoglycin, suggesting that 480 nm photons could have provided the energy for its replication in the protoplanetary disc.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
57por Kawasaki, Noriyuki, Nagashima, Kazuhide, Sakamoto, Naoya, Matsumoto, Toru, Bajo, Ken-ichi, Wada, Sohei, Igami, Yohei, Miyake, Akira, Noguchi, Takaaki, Yamamoto, Daiki, Russell, Sara S., Abe, Yoshinari, Aléon, Jérôme, Alexander, Conel M. O’D., Amari, Sachiko, Amelin, Yuri, Bizzarro, Martin, Bouvier, Audrey, Carlson, Richard W., Chaussidon, Marc, Choi, Byeon-Gak, Dauphas, Nicolas, Davis, Andrew M., Di Rocco, Tommaso, Fujiya, Wataru, Fukai, Ryota, Gautam, Ikshu, Haba, Makiko K., Hibiya, Yuki, Hidaka, Hiroshi, Homma, Hisashi, Hoppe, Peter, Huss, Gary R., Ichida, Kiyohiro, Iizuka, Tsuyoshi, Ireland, Trevor R., Ishikawa, Akira, Ito, Motoo, Itoh, Shoichi, Kita, Noriko T., Kitajima, Kouki, Kleine, Thorsten, Komatani, Shintaro, Krot, Alexander N., Liu, Ming-Chang, Masuda, Yuki, McKeegan, Kevin D., Morita, Mayu, Motomura, Kazuko, Moynier, Frédéric, Nakai, Izumi, Nguyen, Ann, Nittler, Larry, Onose, Morihiko, Pack, Andreas, Park, Changkun, Piani, Laurette, Qin, Liping, Schönbächler, Maria, Tafla, Lauren, Tang, Haolan, Terada, Kentaro, Terada, Yasuko, Usui, Tomohiro, Wadhwa, Meenakshi, Walker, Richard J., Yamashita, Katsuyuki, Yin, Qing-Zhu, Yokoyama, Tetsuya, Yoneda, Shigekazu, Young, Edward D., Yui, Hiroharu, Zhang, Ai-Cheng, Nakamura, Tomoki, Naraoka, Hiroshi, Okazaki, Ryuji, Sakamoto, Kanako, Yabuta, Hikaru, Abe, Masanao, Miyazaki, Akiko, Nakato, Aiko, Nishimura, Masahiro, Okada, Tatsuaki, Yada, Toru, Yogata, Kasumi, Nakazawa, Satoru, Saiki, Takanao, Tanaka, Satoshi, Terui, Fuyuto, Tsuda, Yuichi, Watanabe, Sei-ichiro, Yoshikawa, Makoto, Tachibana, Shogo, Yurimoto, Hisayoshi“…Both the (16)O-rich and (16)O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
58“…In the circumstellar case, tidal truncation makes protoplanetary discs smaller, fainter and less long-lived than those evolving in isolation, thereby reducing the amount of material (gas and dust) available to assemble planetary embryos. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
59por Liang, Pengxiao, de Aragão, Emilia V. F., Pannacci, Giacomo, Vanuzzo, Gianmarco, Giustini, Andrea, Marchione, Demian, Recio, Pedro, Ferlin, Francesco, Stranges, Domenico, Lago, Noelia Faginas, Rosi, Marzio, Casavecchia, Piergiorgio, Balucani, Nadia“…[Image: see text] Cyanoacetylene (HCCCN), the first member of the cyanopolyyne family (HC(n)N, where n = 3, 5, 7, ...), is of particular interest in astrochemistry being ubiquitous in space (molecular clouds, solar-type protostars, protoplanetary disks, circumstellar envelopes, and external galaxies) and also relatively abundant. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto