Cargando…
Evaporative Cooling of Antiprotons to Cryogenic Temperatures
We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, p...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevLett.105.013003 http://cds.cern.ch/record/1294412 |
_version_ | 1780920856387518464 |
---|---|
author | Andresen, G.B. Ashkezari, M.D. Baquero-Ruiz, M. Bertsche, W. Bowe, P.D. Butler, E. Cesar, C.L. Chapman, S. Charlton, M. Fajans, J. Friesen, T. Fujiwara, M.C. Gill, D.R. Hangst, J.S. Hardy, W.N. Hayano, R.S. Hayden, M.E. Humphries, A. Hydomako, R. Jonsell, S. Kurchaninov, L. Lambo, R. Madsen, N. Menary, S. Nolan, P. Olchanski, K. Olin, A. Povilus, A. Pusa, P. Robicheaux, F. Sarid, E. Silveira, D.M. So, C. Storey, J.W. Thompson, R.I. van der Werf, D.P. Wilding, D. Wurtele, J.S. Yamazaki, Y. |
author_facet | Andresen, G.B. Ashkezari, M.D. Baquero-Ruiz, M. Bertsche, W. Bowe, P.D. Butler, E. Cesar, C.L. Chapman, S. Charlton, M. Fajans, J. Friesen, T. Fujiwara, M.C. Gill, D.R. Hangst, J.S. Hardy, W.N. Hayano, R.S. Hayden, M.E. Humphries, A. Hydomako, R. Jonsell, S. Kurchaninov, L. Lambo, R. Madsen, N. Menary, S. Nolan, P. Olchanski, K. Olin, A. Povilus, A. Pusa, P. Robicheaux, F. Sarid, E. Silveira, D.M. So, C. Storey, J.W. Thompson, R.I. van der Werf, D.P. Wilding, D. Wurtele, J.S. Yamazaki, Y. |
author_sort | Andresen, G.B. |
collection | CERN |
description | We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal. |
id | cern-1294412 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2010 |
record_format | invenio |
spelling | cern-12944122023-03-14T19:45:37Zdoi:10.1103/PhysRevLett.105.013003http://cds.cern.ch/record/1294412engAndresen, G.B.Ashkezari, M.D.Baquero-Ruiz, M.Bertsche, W.Bowe, P.D.Butler, E.Cesar, C.L.Chapman, S.Charlton, M.Fajans, J.Friesen, T.Fujiwara, M.C.Gill, D.R.Hangst, J.S.Hardy, W.N.Hayano, R.S.Hayden, M.E.Humphries, A.Hydomako, R.Jonsell, S.Kurchaninov, L.Lambo, R.Madsen, N.Menary, S.Nolan, P.Olchanski, K.Olin, A.Povilus, A.Pusa, P.Robicheaux, F.Sarid, E.Silveira, D.M.So, C.Storey, J.W.Thompson, R.I.van der Werf, D.P.Wilding, D.Wurtele, J.S.Yamazaki, Y.Evaporative Cooling of Antiprotons to Cryogenic TemperaturesOther Fields of PhysicsWe report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise \emph{CPT} test on trapped antihydrogen is a long-standing goal.arXiv:1009.4687oai:cds.cern.ch:12944122010-09-24 |
spellingShingle | Other Fields of Physics Andresen, G.B. Ashkezari, M.D. Baquero-Ruiz, M. Bertsche, W. Bowe, P.D. Butler, E. Cesar, C.L. Chapman, S. Charlton, M. Fajans, J. Friesen, T. Fujiwara, M.C. Gill, D.R. Hangst, J.S. Hardy, W.N. Hayano, R.S. Hayden, M.E. Humphries, A. Hydomako, R. Jonsell, S. Kurchaninov, L. Lambo, R. Madsen, N. Menary, S. Nolan, P. Olchanski, K. Olin, A. Povilus, A. Pusa, P. Robicheaux, F. Sarid, E. Silveira, D.M. So, C. Storey, J.W. Thompson, R.I. van der Werf, D.P. Wilding, D. Wurtele, J.S. Yamazaki, Y. Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title | Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title_full | Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title_fullStr | Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title_full_unstemmed | Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title_short | Evaporative Cooling of Antiprotons to Cryogenic Temperatures |
title_sort | evaporative cooling of antiprotons to cryogenic temperatures |
topic | Other Fields of Physics |
url | https://dx.doi.org/10.1103/PhysRevLett.105.013003 http://cds.cern.ch/record/1294412 |
work_keys_str_mv | AT andresengb evaporativecoolingofantiprotonstocryogenictemperatures AT ashkezarimd evaporativecoolingofantiprotonstocryogenictemperatures AT baqueroruizm evaporativecoolingofantiprotonstocryogenictemperatures AT bertschew evaporativecoolingofantiprotonstocryogenictemperatures AT bowepd evaporativecoolingofantiprotonstocryogenictemperatures AT butlere evaporativecoolingofantiprotonstocryogenictemperatures AT cesarcl evaporativecoolingofantiprotonstocryogenictemperatures AT chapmans evaporativecoolingofantiprotonstocryogenictemperatures AT charltonm evaporativecoolingofantiprotonstocryogenictemperatures AT fajansj evaporativecoolingofantiprotonstocryogenictemperatures AT friesent evaporativecoolingofantiprotonstocryogenictemperatures AT fujiwaramc evaporativecoolingofantiprotonstocryogenictemperatures AT gilldr evaporativecoolingofantiprotonstocryogenictemperatures AT hangstjs evaporativecoolingofantiprotonstocryogenictemperatures AT hardywn evaporativecoolingofantiprotonstocryogenictemperatures AT hayanors evaporativecoolingofantiprotonstocryogenictemperatures AT haydenme evaporativecoolingofantiprotonstocryogenictemperatures AT humphriesa evaporativecoolingofantiprotonstocryogenictemperatures AT hydomakor evaporativecoolingofantiprotonstocryogenictemperatures AT jonsells evaporativecoolingofantiprotonstocryogenictemperatures AT kurchaninovl evaporativecoolingofantiprotonstocryogenictemperatures AT lambor evaporativecoolingofantiprotonstocryogenictemperatures AT madsenn evaporativecoolingofantiprotonstocryogenictemperatures AT menarys evaporativecoolingofantiprotonstocryogenictemperatures AT nolanp evaporativecoolingofantiprotonstocryogenictemperatures AT olchanskik evaporativecoolingofantiprotonstocryogenictemperatures AT olina evaporativecoolingofantiprotonstocryogenictemperatures AT povilusa evaporativecoolingofantiprotonstocryogenictemperatures AT pusap evaporativecoolingofantiprotonstocryogenictemperatures AT robicheauxf evaporativecoolingofantiprotonstocryogenictemperatures AT saride evaporativecoolingofantiprotonstocryogenictemperatures AT silveiradm evaporativecoolingofantiprotonstocryogenictemperatures AT soc evaporativecoolingofantiprotonstocryogenictemperatures AT storeyjw evaporativecoolingofantiprotonstocryogenictemperatures AT thompsonri evaporativecoolingofantiprotonstocryogenictemperatures AT vanderwerfdp evaporativecoolingofantiprotonstocryogenictemperatures AT wildingd evaporativecoolingofantiprotonstocryogenictemperatures AT wurtelejs evaporativecoolingofantiprotonstocryogenictemperatures AT yamazakiy evaporativecoolingofantiprotonstocryogenictemperatures |