Cargando…
Non-resonant New Physics in Top Pair Production at Hadron Colliders
We use top quark pair production as a probe of top-philic non-resonant new physics. Following a low energy effective field theory approach, we calculate several key observables in top quark pair production at hadron colliders (e.g., total cross section, ttbar invariant mass distribution, forward-bac...
Autores principales: | , , , , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
JHEP
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP03(2011)125 http://cds.cern.ch/record/1303855 |
Sumario: | We use top quark pair production as a probe of top-philic non-resonant new physics. Following a low energy effective field theory approach, we calculate several key observables in top quark pair production at hadron colliders (e.g., total cross section, ttbar invariant mass distribution, forward-backward asymmetry, spin correlations) including the interference of the Standard Model with dimension-six operators. We determine the LHC reach in probing new physics after having taken into account the Tevatron constraints. In particular, we show that the gluon fusion process gg -> ttbar which remains largely unconstrained at the Tevatron is affected by only one top-philic dimension-six operator, the chromo-magnetic moment of the top quark. This operator can be further constrained by the LHC data as soon as a precision of about 20% is reached for the total ttbar cross-section. While our approach is general and model-independent, it is particularly relevant to models of Higgs and top compositeness, which we consider in detail, also in connection with ttbar ttbar and ttbar bbbar production. |
---|