Cargando…

Experience on 3D Silicon Sensors for ATLAS IBL

3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been develop...

Descripción completa

Detalles Bibliográficos
Autor principal: Darbo, G.
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: JINST 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1748-0221/10/05/C05001
http://cds.cern.ch/record/1971961
Descripción
Sumario:3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been developed for the Insertable B-Layer (IBL), an additional pixel layer that has been installed in ATLAS during the present shutdown of the LHC collider at CERN. It is presented here the experience in designing, testing and qualifying sensors and detector modules that have been used to equip part of the IBL. Based on the gained experience with 3D silicon sensors for the ATLAS IBL, we discuss possible new developments for the upgrade of ATLAS and CMS at the high-luminosity LHC (HL-LHC).