Cargando…
Influence of the doping on the lattice sites of Fe in Si
We report on the lattice location and thermal stability of Fe in n+- and p+-type silicon. By means of emission channeling we have observed Fe on ideal substitutional sites, sites located in between bond-centered (BC) and substitutional sites, and sites displaced from tetrahedral towards anti-bonding...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.4865597 http://cds.cern.ch/record/2242914 |
Sumario: | We report on the lattice location and thermal stability of Fe in n+- and p+-type silicon. By means of emission channeling we have observed Fe on ideal substitutional sites, sites located in between bond-centered (BC) and substitutional sites, and sites displaced from tetrahedral towards anti-bonding sites. Here, we focus our analysis on the identification of Fe displaced 0.4-0.6 Å from BC sites and the influence of the doping on the stability of these sites. Fe on near-BC sites is found to be more thermally stable in n+-type Si than in low doped or p+-type Si, and seems to be related to multiple vacancy defects. We suggest that the complexes which trap Fe near BC sites, as well as the formation of substitutional Fe, may play a crucial role in P-diffusion gettering. |
---|