Cargando…
Deep learning for inferring cause of data anomalies
Daily operation of a large-scale experiment is a resource consuming task, particularly from perspectives of routine data quality monitoring. Typically, data comes from different sub-detectors and the global quality of data depends on the combinatorial performance of each of them. In this paper, the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/4/042015 http://cds.cern.ch/record/2644811 |