Cargando…

Learning representations of irregular particle-detector geometry with distance-weighted graph networks

<!--HTML-->We explore the possibility of using graph networks to deal with irregular-geometry detectors when reconstructing particles. Thanks to their representation-learning capabilities, graph networks can exploit the detector granularity, while dealing with the event sparsity and the irreg...

Descripción completa

Detalles Bibliográficos
Autor principal: Kieseler, Jan
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2672564