Cargando…
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
<!--HTML-->We explore the possibility of using graph networks to deal with irregular-geometry detectors when reconstructing particles. Thanks to their representation-learning capabilities, graph networks can exploit the detector granularity, while dealing with the event sparsity and the irreg...
Autor principal: | Kieseler, Jan |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672564 |
Ejemplares similares
-
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
por: Qasim, Shah Rukh, et al.
Publicado: (2019) -
Learning Invariant Representations using Mutual Information Regularization
por: Tan, Justin
Publicado: (2019) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
ParticleNet: Jet Tagging via Particle Clouds
por: Qu, Huilin
Publicado: (2019) -
Review of recent searches for long-lived particles at the LHC
por: Redi, Federico Leo
Publicado: (2021)