Cargando…
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
We present the implementation of binary and ternary neural networks in the hls4ml library, designed to automatically convert deep neural network models to digital circuits with FPGA firmware. Starting from benchmark models trained with floating point precision, we investigate different strategies to...
Autores principales: | Loncar, Vladimir, Ngadiuba, Jennifer, Duarte, Javier, Harris, Philip, Hoang, Duc, Pedro, Kevin, Pierini, Maurizio, Rankin, Dylan, Sagear, Sheila, Summers, Sioni, Tran, Nhan, Jindariani, Sergo, Wu, Zhenbin, Liu, Mia, Di Guglielmo, Giuseppe, Kreinar, Edward |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/aba042 http://cds.cern.ch/record/2715322 |
Ejemplares similares
-
Fast convolutional neural networks on FPGAs with hls4ml
por: Aarrestad, Thea, et al.
Publicado: (2021) -
Convolutional LSTM models to estimate network traffic
por: Waczynska, Joanna, et al.
Publicado: (2021) -
hls4ml: deploying deep learning on FPGAs for L1 trigger and Data Acquisition
por: Duarte, Javier, et al.
Publicado: (2019) -
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
por: Fahim, Farah, et al.
Publicado: (2021) -
Fast inference of Boosted Decision Trees in FPGAs for particle physics
por: Summers, Sioni, et al.
Publicado: (2020)