Cargando…

Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections

Creating accurate and low-noise covariance matrices represents a formidable challenge in modern-day cosmology. We present a formalism to compress arbitrary observables into a small number of bins by projection into a model-specific subspace that minimizes the prior-averaged log-likelihood error. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Philcox, Oliver H.E., Ivanov, Mikhail M., Zaldarriaga, Matias, Simonovic, Marko, Schmittfull, Marcel
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.103.043508
http://cds.cern.ch/record/2730079