Cargando…
Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections
Creating accurate and low-noise covariance matrices represents a formidable challenge in modern-day cosmology. We present a formalism to compress arbitrary observables into a small number of bins by projection into a model-specific subspace that minimizes the prior-averaged log-likelihood error. The...
Autores principales: | Philcox, Oliver H.E., Ivanov, Mikhail M., Zaldarriaga, Matias, Simonovic, Marko, Schmittfull, Marcel |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.103.043508 http://cds.cern.ch/record/2730079 |
Ejemplares similares
-
Modeling Galaxies in Redshift Space at the Field Level
por: Schmittfull, Marcel, et al.
Publicado: (2020) -
Cosmological constraints without nonlinear redshift-space distortions
por: Ivanov, Mikhail M., et al.
Publicado: (2021) -
Modeling Biased Tracers at the Field Level
por: Schmittfull, Marcel, et al.
Publicado: (2018) -
Cosmological Information in Perturbative Forward Modeling
por: Cabass, Giovanni, et al.
Publicado: (2023) -
Beyond the traditional Line-of-Sight approach of cosmological angular statistics
por: Schöneberg, Nils, et al.
Publicado: (2018)