Cargando…

Applications and Techniques for Fast Machine Learning in Science

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshop...

Descripción completa

Detalles Bibliográficos
Autores principales: Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Guo, Dongning, Hazelwood, Kyle J., Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, von Krosigk, Belina, Wang, Shen, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E., Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.3389/fdata.2022.787421
http://cds.cern.ch/record/2812677