Cargando…

Applications and Techniques for Fast Machine Learning in Science

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshop...

Descripción completa

Detalles Bibliográficos
Autores principales: Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Guo, Dongning, Hazelwood, Kyle J., Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, von Krosigk, Belina, Wang, Shen, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E., Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.3389/fdata.2022.787421
http://cds.cern.ch/record/2812677
_version_ 1780973355215618048
author Deiana, Allison McCarn
Tran, Nhan
Agar, Joshua
Blott, Michaela
Di Guglielmo, Giuseppe
Duarte, Javier
Harris, Philip
Hauck, Scott
Liu, Mia
Neubauer, Mark S.
Ngadiuba, Jennifer
Ogrenci-Memik, Seda
Pierini, Maurizio
Aarrestad, Thea
Bahr, Steffen
Becker, Jurgen
Berthold, Anne-Sophie
Bonventre, Richard J.
Bravo, Tomas E. Muller
Diefenthaler, Markus
Dong, Zhen
Fritzsche, Nick
Gholami, Amir
Govorkova, Ekaterina
Guo, Dongning
Hazelwood, Kyle J.
Herwig, Christian
Khan, Babar
Kim, Sehoon
Klijnsma, Thomas
Liu, Yaling
Lo, Kin Ho
Nguyen, Tri
Pezzullo, Gianantonio
Rasoulinezhad, Seyedramin
Rivera, Ryan A.
Scholberg, Kate
Selig, Justin
Sen, Sougata
Strukov, Dmitri
Tang, William
Thais, Savannah
Unger, Kai Lukas
Vilalta, Ricardo
Krosigk, Belinavon
von Krosigk, Belina
Wang, Shen
Warburton, Thomas K.
Flechas, Maria Acosta
Aportela, Anthony
Calvet, Thomas
Cristella, Leonardo
Diaz, Daniel
Doglioni, Caterina
Galati, Maria Domenica
Khoda, Elham E.
Fahim, Farah
Giri, Davide
Hawks, Benjamin
Hoang, Duc
Holzman, Burt
Hsu, Shih-Chieh
Jindariani, Sergo
Johnson, Iris
Kansal, Raghav
Kastner, Ryan
Katsavounidis, Erik
Krupa, Jeffrey
Li, Pan
Madireddy, Sandeep
Marx, Ethan
McCormack, Patrick
Meza, Andres
Mitrevski, Jovan
Mohammed, Mohammed Attia
Mokhtar, Farouk
Moreno, Eric
Nagu, Srishti
Narayan, Rohin
Palladino, Noah
Que, Zhiqiang
Park, Sang Eon
Ramamoorthy, Subramanian
Rankin, Dylan
Rothman, Simon
Sharma, Ashish
Summers, Sioni
Vischia, Pietro
Vlimant, Jean-Roch
Weng, Olivia
author_facet Deiana, Allison McCarn
Tran, Nhan
Agar, Joshua
Blott, Michaela
Di Guglielmo, Giuseppe
Duarte, Javier
Harris, Philip
Hauck, Scott
Liu, Mia
Neubauer, Mark S.
Ngadiuba, Jennifer
Ogrenci-Memik, Seda
Pierini, Maurizio
Aarrestad, Thea
Bahr, Steffen
Becker, Jurgen
Berthold, Anne-Sophie
Bonventre, Richard J.
Bravo, Tomas E. Muller
Diefenthaler, Markus
Dong, Zhen
Fritzsche, Nick
Gholami, Amir
Govorkova, Ekaterina
Guo, Dongning
Hazelwood, Kyle J.
Herwig, Christian
Khan, Babar
Kim, Sehoon
Klijnsma, Thomas
Liu, Yaling
Lo, Kin Ho
Nguyen, Tri
Pezzullo, Gianantonio
Rasoulinezhad, Seyedramin
Rivera, Ryan A.
Scholberg, Kate
Selig, Justin
Sen, Sougata
Strukov, Dmitri
Tang, William
Thais, Savannah
Unger, Kai Lukas
Vilalta, Ricardo
Krosigk, Belinavon
von Krosigk, Belina
Wang, Shen
Warburton, Thomas K.
Flechas, Maria Acosta
Aportela, Anthony
Calvet, Thomas
Cristella, Leonardo
Diaz, Daniel
Doglioni, Caterina
Galati, Maria Domenica
Khoda, Elham E.
Fahim, Farah
Giri, Davide
Hawks, Benjamin
Hoang, Duc
Holzman, Burt
Hsu, Shih-Chieh
Jindariani, Sergo
Johnson, Iris
Kansal, Raghav
Kastner, Ryan
Katsavounidis, Erik
Krupa, Jeffrey
Li, Pan
Madireddy, Sandeep
Marx, Ethan
McCormack, Patrick
Meza, Andres
Mitrevski, Jovan
Mohammed, Mohammed Attia
Mokhtar, Farouk
Moreno, Eric
Nagu, Srishti
Narayan, Rohin
Palladino, Noah
Que, Zhiqiang
Park, Sang Eon
Ramamoorthy, Subramanian
Rankin, Dylan
Rothman, Simon
Sharma, Ashish
Summers, Sioni
Vischia, Pietro
Vlimant, Jean-Roch
Weng, Olivia
author_sort Deiana, Allison McCarn
collection CERN
description In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
id cern-2812677
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-28126772023-07-19T06:05:34Zdoi:10.3389/fdata.2022.787421http://cds.cern.ch/record/2812677engDeiana, Allison McCarnTran, NhanAgar, JoshuaBlott, MichaelaDi Guglielmo, GiuseppeDuarte, JavierHarris, PhilipHauck, ScottLiu, MiaNeubauer, Mark S.Ngadiuba, JenniferOgrenci-Memik, SedaPierini, MaurizioAarrestad, TheaBahr, SteffenBecker, JurgenBerthold, Anne-SophieBonventre, Richard J.Bravo, Tomas E. MullerDiefenthaler, MarkusDong, ZhenFritzsche, NickGholami, AmirGovorkova, EkaterinaGuo, DongningHazelwood, Kyle J.Herwig, ChristianKhan, BabarKim, SehoonKlijnsma, ThomasLiu, YalingLo, Kin HoNguyen, TriPezzullo, GianantonioRasoulinezhad, SeyedraminRivera, Ryan A.Scholberg, KateSelig, JustinSen, SougataStrukov, DmitriTang, WilliamThais, SavannahUnger, Kai LukasVilalta, RicardoKrosigk, Belinavonvon Krosigk, BelinaWang, ShenWarburton, Thomas K.Flechas, Maria AcostaAportela, AnthonyCalvet, ThomasCristella, LeonardoDiaz, DanielDoglioni, CaterinaGalati, Maria DomenicaKhoda, Elham E.Fahim, FarahGiri, DavideHawks, BenjaminHoang, DucHolzman, BurtHsu, Shih-ChiehJindariani, SergoJohnson, IrisKansal, RaghavKastner, RyanKatsavounidis, ErikKrupa, JeffreyLi, PanMadireddy, SandeepMarx, EthanMcCormack, PatrickMeza, AndresMitrevski, JovanMohammed, Mohammed AttiaMokhtar, FaroukMoreno, EricNagu, SrishtiNarayan, RohinPalladino, NoahQue, ZhiqiangPark, Sang EonRamamoorthy, SubramanianRankin, DylanRothman, SimonSharma, AshishSummers, SioniVischia, PietroVlimant, Jean-RochWeng, OliviaApplications and Techniques for Fast Machine Learning in Sciencephysics.ins-detDetectors and Experimental Techniquesphysics.data-anOther Fields of Physicscs.ARComputing and Computerscs.LGComputing and ComputersIn this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.arXiv:2110.13041FERMILAB-PUB-21-502-AD-E-SCDoai:cds.cern.ch:28126772021-10-25
spellingShingle physics.ins-det
Detectors and Experimental Techniques
physics.data-an
Other Fields of Physics
cs.AR
Computing and Computers
cs.LG
Computing and Computers
Deiana, Allison McCarn
Tran, Nhan
Agar, Joshua
Blott, Michaela
Di Guglielmo, Giuseppe
Duarte, Javier
Harris, Philip
Hauck, Scott
Liu, Mia
Neubauer, Mark S.
Ngadiuba, Jennifer
Ogrenci-Memik, Seda
Pierini, Maurizio
Aarrestad, Thea
Bahr, Steffen
Becker, Jurgen
Berthold, Anne-Sophie
Bonventre, Richard J.
Bravo, Tomas E. Muller
Diefenthaler, Markus
Dong, Zhen
Fritzsche, Nick
Gholami, Amir
Govorkova, Ekaterina
Guo, Dongning
Hazelwood, Kyle J.
Herwig, Christian
Khan, Babar
Kim, Sehoon
Klijnsma, Thomas
Liu, Yaling
Lo, Kin Ho
Nguyen, Tri
Pezzullo, Gianantonio
Rasoulinezhad, Seyedramin
Rivera, Ryan A.
Scholberg, Kate
Selig, Justin
Sen, Sougata
Strukov, Dmitri
Tang, William
Thais, Savannah
Unger, Kai Lukas
Vilalta, Ricardo
Krosigk, Belinavon
von Krosigk, Belina
Wang, Shen
Warburton, Thomas K.
Flechas, Maria Acosta
Aportela, Anthony
Calvet, Thomas
Cristella, Leonardo
Diaz, Daniel
Doglioni, Caterina
Galati, Maria Domenica
Khoda, Elham E.
Fahim, Farah
Giri, Davide
Hawks, Benjamin
Hoang, Duc
Holzman, Burt
Hsu, Shih-Chieh
Jindariani, Sergo
Johnson, Iris
Kansal, Raghav
Kastner, Ryan
Katsavounidis, Erik
Krupa, Jeffrey
Li, Pan
Madireddy, Sandeep
Marx, Ethan
McCormack, Patrick
Meza, Andres
Mitrevski, Jovan
Mohammed, Mohammed Attia
Mokhtar, Farouk
Moreno, Eric
Nagu, Srishti
Narayan, Rohin
Palladino, Noah
Que, Zhiqiang
Park, Sang Eon
Ramamoorthy, Subramanian
Rankin, Dylan
Rothman, Simon
Sharma, Ashish
Summers, Sioni
Vischia, Pietro
Vlimant, Jean-Roch
Weng, Olivia
Applications and Techniques for Fast Machine Learning in Science
title Applications and Techniques for Fast Machine Learning in Science
title_full Applications and Techniques for Fast Machine Learning in Science
title_fullStr Applications and Techniques for Fast Machine Learning in Science
title_full_unstemmed Applications and Techniques for Fast Machine Learning in Science
title_short Applications and Techniques for Fast Machine Learning in Science
title_sort applications and techniques for fast machine learning in science
topic physics.ins-det
Detectors and Experimental Techniques
physics.data-an
Other Fields of Physics
cs.AR
Computing and Computers
cs.LG
Computing and Computers
url https://dx.doi.org/10.3389/fdata.2022.787421
http://cds.cern.ch/record/2812677
work_keys_str_mv AT deianaallisonmccarn applicationsandtechniquesforfastmachinelearninginscience
AT trannhan applicationsandtechniquesforfastmachinelearninginscience
AT agarjoshua applicationsandtechniquesforfastmachinelearninginscience
AT blottmichaela applicationsandtechniquesforfastmachinelearninginscience
AT diguglielmogiuseppe applicationsandtechniquesforfastmachinelearninginscience
AT duartejavier applicationsandtechniquesforfastmachinelearninginscience
AT harrisphilip applicationsandtechniquesforfastmachinelearninginscience
AT hauckscott applicationsandtechniquesforfastmachinelearninginscience
AT liumia applicationsandtechniquesforfastmachinelearninginscience
AT neubauermarks applicationsandtechniquesforfastmachinelearninginscience
AT ngadiubajennifer applicationsandtechniquesforfastmachinelearninginscience
AT ogrencimemikseda applicationsandtechniquesforfastmachinelearninginscience
AT pierinimaurizio applicationsandtechniquesforfastmachinelearninginscience
AT aarrestadthea applicationsandtechniquesforfastmachinelearninginscience
AT bahrsteffen applicationsandtechniquesforfastmachinelearninginscience
AT beckerjurgen applicationsandtechniquesforfastmachinelearninginscience
AT bertholdannesophie applicationsandtechniquesforfastmachinelearninginscience
AT bonventrerichardj applicationsandtechniquesforfastmachinelearninginscience
AT bravotomasemuller applicationsandtechniquesforfastmachinelearninginscience
AT diefenthalermarkus applicationsandtechniquesforfastmachinelearninginscience
AT dongzhen applicationsandtechniquesforfastmachinelearninginscience
AT fritzschenick applicationsandtechniquesforfastmachinelearninginscience
AT gholamiamir applicationsandtechniquesforfastmachinelearninginscience
AT govorkovaekaterina applicationsandtechniquesforfastmachinelearninginscience
AT guodongning applicationsandtechniquesforfastmachinelearninginscience
AT hazelwoodkylej applicationsandtechniquesforfastmachinelearninginscience
AT herwigchristian applicationsandtechniquesforfastmachinelearninginscience
AT khanbabar applicationsandtechniquesforfastmachinelearninginscience
AT kimsehoon applicationsandtechniquesforfastmachinelearninginscience
AT klijnsmathomas applicationsandtechniquesforfastmachinelearninginscience
AT liuyaling applicationsandtechniquesforfastmachinelearninginscience
AT lokinho applicationsandtechniquesforfastmachinelearninginscience
AT nguyentri applicationsandtechniquesforfastmachinelearninginscience
AT pezzullogianantonio applicationsandtechniquesforfastmachinelearninginscience
AT rasoulinezhadseyedramin applicationsandtechniquesforfastmachinelearninginscience
AT riveraryana applicationsandtechniquesforfastmachinelearninginscience
AT scholbergkate applicationsandtechniquesforfastmachinelearninginscience
AT seligjustin applicationsandtechniquesforfastmachinelearninginscience
AT sensougata applicationsandtechniquesforfastmachinelearninginscience
AT strukovdmitri applicationsandtechniquesforfastmachinelearninginscience
AT tangwilliam applicationsandtechniquesforfastmachinelearninginscience
AT thaissavannah applicationsandtechniquesforfastmachinelearninginscience
AT ungerkailukas applicationsandtechniquesforfastmachinelearninginscience
AT vilaltaricardo applicationsandtechniquesforfastmachinelearninginscience
AT krosigkbelinavon applicationsandtechniquesforfastmachinelearninginscience
AT vonkrosigkbelina applicationsandtechniquesforfastmachinelearninginscience
AT wangshen applicationsandtechniquesforfastmachinelearninginscience
AT warburtonthomask applicationsandtechniquesforfastmachinelearninginscience
AT flechasmariaacosta applicationsandtechniquesforfastmachinelearninginscience
AT aportelaanthony applicationsandtechniquesforfastmachinelearninginscience
AT calvetthomas applicationsandtechniquesforfastmachinelearninginscience
AT cristellaleonardo applicationsandtechniquesforfastmachinelearninginscience
AT diazdaniel applicationsandtechniquesforfastmachinelearninginscience
AT doglionicaterina applicationsandtechniquesforfastmachinelearninginscience
AT galatimariadomenica applicationsandtechniquesforfastmachinelearninginscience
AT khodaelhame applicationsandtechniquesforfastmachinelearninginscience
AT fahimfarah applicationsandtechniquesforfastmachinelearninginscience
AT giridavide applicationsandtechniquesforfastmachinelearninginscience
AT hawksbenjamin applicationsandtechniquesforfastmachinelearninginscience
AT hoangduc applicationsandtechniquesforfastmachinelearninginscience
AT holzmanburt applicationsandtechniquesforfastmachinelearninginscience
AT hsushihchieh applicationsandtechniquesforfastmachinelearninginscience
AT jindarianisergo applicationsandtechniquesforfastmachinelearninginscience
AT johnsoniris applicationsandtechniquesforfastmachinelearninginscience
AT kansalraghav applicationsandtechniquesforfastmachinelearninginscience
AT kastnerryan applicationsandtechniquesforfastmachinelearninginscience
AT katsavounidiserik applicationsandtechniquesforfastmachinelearninginscience
AT krupajeffrey applicationsandtechniquesforfastmachinelearninginscience
AT lipan applicationsandtechniquesforfastmachinelearninginscience
AT madireddysandeep applicationsandtechniquesforfastmachinelearninginscience
AT marxethan applicationsandtechniquesforfastmachinelearninginscience
AT mccormackpatrick applicationsandtechniquesforfastmachinelearninginscience
AT mezaandres applicationsandtechniquesforfastmachinelearninginscience
AT mitrevskijovan applicationsandtechniquesforfastmachinelearninginscience
AT mohammedmohammedattia applicationsandtechniquesforfastmachinelearninginscience
AT mokhtarfarouk applicationsandtechniquesforfastmachinelearninginscience
AT morenoeric applicationsandtechniquesforfastmachinelearninginscience
AT nagusrishti applicationsandtechniquesforfastmachinelearninginscience
AT narayanrohin applicationsandtechniquesforfastmachinelearninginscience
AT palladinonoah applicationsandtechniquesforfastmachinelearninginscience
AT quezhiqiang applicationsandtechniquesforfastmachinelearninginscience
AT parksangeon applicationsandtechniquesforfastmachinelearninginscience
AT ramamoorthysubramanian applicationsandtechniquesforfastmachinelearninginscience
AT rankindylan applicationsandtechniquesforfastmachinelearninginscience
AT rothmansimon applicationsandtechniquesforfastmachinelearninginscience
AT sharmaashish applicationsandtechniquesforfastmachinelearninginscience
AT summerssioni applicationsandtechniquesforfastmachinelearninginscience
AT vischiapietro applicationsandtechniquesforfastmachinelearninginscience
AT vlimantjeanroch applicationsandtechniquesforfastmachinelearninginscience
AT wengolivia applicationsandtechniquesforfastmachinelearninginscience