Cargando…
Applications and Techniques for Fast Machine Learning in Science
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshop...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3389/fdata.2022.787421 http://cds.cern.ch/record/2812677 |
_version_ | 1780973355215618048 |
---|---|
author | Deiana, Allison McCarn Tran, Nhan Agar, Joshua Blott, Michaela Di Guglielmo, Giuseppe Duarte, Javier Harris, Philip Hauck, Scott Liu, Mia Neubauer, Mark S. Ngadiuba, Jennifer Ogrenci-Memik, Seda Pierini, Maurizio Aarrestad, Thea Bahr, Steffen Becker, Jurgen Berthold, Anne-Sophie Bonventre, Richard J. Bravo, Tomas E. Muller Diefenthaler, Markus Dong, Zhen Fritzsche, Nick Gholami, Amir Govorkova, Ekaterina Guo, Dongning Hazelwood, Kyle J. Herwig, Christian Khan, Babar Kim, Sehoon Klijnsma, Thomas Liu, Yaling Lo, Kin Ho Nguyen, Tri Pezzullo, Gianantonio Rasoulinezhad, Seyedramin Rivera, Ryan A. Scholberg, Kate Selig, Justin Sen, Sougata Strukov, Dmitri Tang, William Thais, Savannah Unger, Kai Lukas Vilalta, Ricardo Krosigk, Belinavon von Krosigk, Belina Wang, Shen Warburton, Thomas K. Flechas, Maria Acosta Aportela, Anthony Calvet, Thomas Cristella, Leonardo Diaz, Daniel Doglioni, Caterina Galati, Maria Domenica Khoda, Elham E. Fahim, Farah Giri, Davide Hawks, Benjamin Hoang, Duc Holzman, Burt Hsu, Shih-Chieh Jindariani, Sergo Johnson, Iris Kansal, Raghav Kastner, Ryan Katsavounidis, Erik Krupa, Jeffrey Li, Pan Madireddy, Sandeep Marx, Ethan McCormack, Patrick Meza, Andres Mitrevski, Jovan Mohammed, Mohammed Attia Mokhtar, Farouk Moreno, Eric Nagu, Srishti Narayan, Rohin Palladino, Noah Que, Zhiqiang Park, Sang Eon Ramamoorthy, Subramanian Rankin, Dylan Rothman, Simon Sharma, Ashish Summers, Sioni Vischia, Pietro Vlimant, Jean-Roch Weng, Olivia |
author_facet | Deiana, Allison McCarn Tran, Nhan Agar, Joshua Blott, Michaela Di Guglielmo, Giuseppe Duarte, Javier Harris, Philip Hauck, Scott Liu, Mia Neubauer, Mark S. Ngadiuba, Jennifer Ogrenci-Memik, Seda Pierini, Maurizio Aarrestad, Thea Bahr, Steffen Becker, Jurgen Berthold, Anne-Sophie Bonventre, Richard J. Bravo, Tomas E. Muller Diefenthaler, Markus Dong, Zhen Fritzsche, Nick Gholami, Amir Govorkova, Ekaterina Guo, Dongning Hazelwood, Kyle J. Herwig, Christian Khan, Babar Kim, Sehoon Klijnsma, Thomas Liu, Yaling Lo, Kin Ho Nguyen, Tri Pezzullo, Gianantonio Rasoulinezhad, Seyedramin Rivera, Ryan A. Scholberg, Kate Selig, Justin Sen, Sougata Strukov, Dmitri Tang, William Thais, Savannah Unger, Kai Lukas Vilalta, Ricardo Krosigk, Belinavon von Krosigk, Belina Wang, Shen Warburton, Thomas K. Flechas, Maria Acosta Aportela, Anthony Calvet, Thomas Cristella, Leonardo Diaz, Daniel Doglioni, Caterina Galati, Maria Domenica Khoda, Elham E. Fahim, Farah Giri, Davide Hawks, Benjamin Hoang, Duc Holzman, Burt Hsu, Shih-Chieh Jindariani, Sergo Johnson, Iris Kansal, Raghav Kastner, Ryan Katsavounidis, Erik Krupa, Jeffrey Li, Pan Madireddy, Sandeep Marx, Ethan McCormack, Patrick Meza, Andres Mitrevski, Jovan Mohammed, Mohammed Attia Mokhtar, Farouk Moreno, Eric Nagu, Srishti Narayan, Rohin Palladino, Noah Que, Zhiqiang Park, Sang Eon Ramamoorthy, Subramanian Rankin, Dylan Rothman, Simon Sharma, Ashish Summers, Sioni Vischia, Pietro Vlimant, Jean-Roch Weng, Olivia |
author_sort | Deiana, Allison McCarn |
collection | CERN |
description | In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs. |
id | cern-2812677 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-28126772023-07-19T06:05:34Zdoi:10.3389/fdata.2022.787421http://cds.cern.ch/record/2812677engDeiana, Allison McCarnTran, NhanAgar, JoshuaBlott, MichaelaDi Guglielmo, GiuseppeDuarte, JavierHarris, PhilipHauck, ScottLiu, MiaNeubauer, Mark S.Ngadiuba, JenniferOgrenci-Memik, SedaPierini, MaurizioAarrestad, TheaBahr, SteffenBecker, JurgenBerthold, Anne-SophieBonventre, Richard J.Bravo, Tomas E. MullerDiefenthaler, MarkusDong, ZhenFritzsche, NickGholami, AmirGovorkova, EkaterinaGuo, DongningHazelwood, Kyle J.Herwig, ChristianKhan, BabarKim, SehoonKlijnsma, ThomasLiu, YalingLo, Kin HoNguyen, TriPezzullo, GianantonioRasoulinezhad, SeyedraminRivera, Ryan A.Scholberg, KateSelig, JustinSen, SougataStrukov, DmitriTang, WilliamThais, SavannahUnger, Kai LukasVilalta, RicardoKrosigk, Belinavonvon Krosigk, BelinaWang, ShenWarburton, Thomas K.Flechas, Maria AcostaAportela, AnthonyCalvet, ThomasCristella, LeonardoDiaz, DanielDoglioni, CaterinaGalati, Maria DomenicaKhoda, Elham E.Fahim, FarahGiri, DavideHawks, BenjaminHoang, DucHolzman, BurtHsu, Shih-ChiehJindariani, SergoJohnson, IrisKansal, RaghavKastner, RyanKatsavounidis, ErikKrupa, JeffreyLi, PanMadireddy, SandeepMarx, EthanMcCormack, PatrickMeza, AndresMitrevski, JovanMohammed, Mohammed AttiaMokhtar, FaroukMoreno, EricNagu, SrishtiNarayan, RohinPalladino, NoahQue, ZhiqiangPark, Sang EonRamamoorthy, SubramanianRankin, DylanRothman, SimonSharma, AshishSummers, SioniVischia, PietroVlimant, Jean-RochWeng, OliviaApplications and Techniques for Fast Machine Learning in Sciencephysics.ins-detDetectors and Experimental Techniquesphysics.data-anOther Fields of Physicscs.ARComputing and Computerscs.LGComputing and ComputersIn this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.arXiv:2110.13041FERMILAB-PUB-21-502-AD-E-SCDoai:cds.cern.ch:28126772021-10-25 |
spellingShingle | physics.ins-det Detectors and Experimental Techniques physics.data-an Other Fields of Physics cs.AR Computing and Computers cs.LG Computing and Computers Deiana, Allison McCarn Tran, Nhan Agar, Joshua Blott, Michaela Di Guglielmo, Giuseppe Duarte, Javier Harris, Philip Hauck, Scott Liu, Mia Neubauer, Mark S. Ngadiuba, Jennifer Ogrenci-Memik, Seda Pierini, Maurizio Aarrestad, Thea Bahr, Steffen Becker, Jurgen Berthold, Anne-Sophie Bonventre, Richard J. Bravo, Tomas E. Muller Diefenthaler, Markus Dong, Zhen Fritzsche, Nick Gholami, Amir Govorkova, Ekaterina Guo, Dongning Hazelwood, Kyle J. Herwig, Christian Khan, Babar Kim, Sehoon Klijnsma, Thomas Liu, Yaling Lo, Kin Ho Nguyen, Tri Pezzullo, Gianantonio Rasoulinezhad, Seyedramin Rivera, Ryan A. Scholberg, Kate Selig, Justin Sen, Sougata Strukov, Dmitri Tang, William Thais, Savannah Unger, Kai Lukas Vilalta, Ricardo Krosigk, Belinavon von Krosigk, Belina Wang, Shen Warburton, Thomas K. Flechas, Maria Acosta Aportela, Anthony Calvet, Thomas Cristella, Leonardo Diaz, Daniel Doglioni, Caterina Galati, Maria Domenica Khoda, Elham E. Fahim, Farah Giri, Davide Hawks, Benjamin Hoang, Duc Holzman, Burt Hsu, Shih-Chieh Jindariani, Sergo Johnson, Iris Kansal, Raghav Kastner, Ryan Katsavounidis, Erik Krupa, Jeffrey Li, Pan Madireddy, Sandeep Marx, Ethan McCormack, Patrick Meza, Andres Mitrevski, Jovan Mohammed, Mohammed Attia Mokhtar, Farouk Moreno, Eric Nagu, Srishti Narayan, Rohin Palladino, Noah Que, Zhiqiang Park, Sang Eon Ramamoorthy, Subramanian Rankin, Dylan Rothman, Simon Sharma, Ashish Summers, Sioni Vischia, Pietro Vlimant, Jean-Roch Weng, Olivia Applications and Techniques for Fast Machine Learning in Science |
title | Applications and Techniques for Fast Machine Learning in Science |
title_full | Applications and Techniques for Fast Machine Learning in Science |
title_fullStr | Applications and Techniques for Fast Machine Learning in Science |
title_full_unstemmed | Applications and Techniques for Fast Machine Learning in Science |
title_short | Applications and Techniques for Fast Machine Learning in Science |
title_sort | applications and techniques for fast machine learning in science |
topic | physics.ins-det Detectors and Experimental Techniques physics.data-an Other Fields of Physics cs.AR Computing and Computers cs.LG Computing and Computers |
url | https://dx.doi.org/10.3389/fdata.2022.787421 http://cds.cern.ch/record/2812677 |
work_keys_str_mv | AT deianaallisonmccarn applicationsandtechniquesforfastmachinelearninginscience AT trannhan applicationsandtechniquesforfastmachinelearninginscience AT agarjoshua applicationsandtechniquesforfastmachinelearninginscience AT blottmichaela applicationsandtechniquesforfastmachinelearninginscience AT diguglielmogiuseppe applicationsandtechniquesforfastmachinelearninginscience AT duartejavier applicationsandtechniquesforfastmachinelearninginscience AT harrisphilip applicationsandtechniquesforfastmachinelearninginscience AT hauckscott applicationsandtechniquesforfastmachinelearninginscience AT liumia applicationsandtechniquesforfastmachinelearninginscience AT neubauermarks applicationsandtechniquesforfastmachinelearninginscience AT ngadiubajennifer applicationsandtechniquesforfastmachinelearninginscience AT ogrencimemikseda applicationsandtechniquesforfastmachinelearninginscience AT pierinimaurizio applicationsandtechniquesforfastmachinelearninginscience AT aarrestadthea applicationsandtechniquesforfastmachinelearninginscience AT bahrsteffen applicationsandtechniquesforfastmachinelearninginscience AT beckerjurgen applicationsandtechniquesforfastmachinelearninginscience AT bertholdannesophie applicationsandtechniquesforfastmachinelearninginscience AT bonventrerichardj applicationsandtechniquesforfastmachinelearninginscience AT bravotomasemuller applicationsandtechniquesforfastmachinelearninginscience AT diefenthalermarkus applicationsandtechniquesforfastmachinelearninginscience AT dongzhen applicationsandtechniquesforfastmachinelearninginscience AT fritzschenick applicationsandtechniquesforfastmachinelearninginscience AT gholamiamir applicationsandtechniquesforfastmachinelearninginscience AT govorkovaekaterina applicationsandtechniquesforfastmachinelearninginscience AT guodongning applicationsandtechniquesforfastmachinelearninginscience AT hazelwoodkylej applicationsandtechniquesforfastmachinelearninginscience AT herwigchristian applicationsandtechniquesforfastmachinelearninginscience AT khanbabar applicationsandtechniquesforfastmachinelearninginscience AT kimsehoon applicationsandtechniquesforfastmachinelearninginscience AT klijnsmathomas applicationsandtechniquesforfastmachinelearninginscience AT liuyaling applicationsandtechniquesforfastmachinelearninginscience AT lokinho applicationsandtechniquesforfastmachinelearninginscience AT nguyentri applicationsandtechniquesforfastmachinelearninginscience AT pezzullogianantonio applicationsandtechniquesforfastmachinelearninginscience AT rasoulinezhadseyedramin applicationsandtechniquesforfastmachinelearninginscience AT riveraryana applicationsandtechniquesforfastmachinelearninginscience AT scholbergkate applicationsandtechniquesforfastmachinelearninginscience AT seligjustin applicationsandtechniquesforfastmachinelearninginscience AT sensougata applicationsandtechniquesforfastmachinelearninginscience AT strukovdmitri applicationsandtechniquesforfastmachinelearninginscience AT tangwilliam applicationsandtechniquesforfastmachinelearninginscience AT thaissavannah applicationsandtechniquesforfastmachinelearninginscience AT ungerkailukas applicationsandtechniquesforfastmachinelearninginscience AT vilaltaricardo applicationsandtechniquesforfastmachinelearninginscience AT krosigkbelinavon applicationsandtechniquesforfastmachinelearninginscience AT vonkrosigkbelina applicationsandtechniquesforfastmachinelearninginscience AT wangshen applicationsandtechniquesforfastmachinelearninginscience AT warburtonthomask applicationsandtechniquesforfastmachinelearninginscience AT flechasmariaacosta applicationsandtechniquesforfastmachinelearninginscience AT aportelaanthony applicationsandtechniquesforfastmachinelearninginscience AT calvetthomas applicationsandtechniquesforfastmachinelearninginscience AT cristellaleonardo applicationsandtechniquesforfastmachinelearninginscience AT diazdaniel applicationsandtechniquesforfastmachinelearninginscience AT doglionicaterina applicationsandtechniquesforfastmachinelearninginscience AT galatimariadomenica applicationsandtechniquesforfastmachinelearninginscience AT khodaelhame applicationsandtechniquesforfastmachinelearninginscience AT fahimfarah applicationsandtechniquesforfastmachinelearninginscience AT giridavide applicationsandtechniquesforfastmachinelearninginscience AT hawksbenjamin applicationsandtechniquesforfastmachinelearninginscience AT hoangduc applicationsandtechniquesforfastmachinelearninginscience AT holzmanburt applicationsandtechniquesforfastmachinelearninginscience AT hsushihchieh applicationsandtechniquesforfastmachinelearninginscience AT jindarianisergo applicationsandtechniquesforfastmachinelearninginscience AT johnsoniris applicationsandtechniquesforfastmachinelearninginscience AT kansalraghav applicationsandtechniquesforfastmachinelearninginscience AT kastnerryan applicationsandtechniquesforfastmachinelearninginscience AT katsavounidiserik applicationsandtechniquesforfastmachinelearninginscience AT krupajeffrey applicationsandtechniquesforfastmachinelearninginscience AT lipan applicationsandtechniquesforfastmachinelearninginscience AT madireddysandeep applicationsandtechniquesforfastmachinelearninginscience AT marxethan applicationsandtechniquesforfastmachinelearninginscience AT mccormackpatrick applicationsandtechniquesforfastmachinelearninginscience AT mezaandres applicationsandtechniquesforfastmachinelearninginscience AT mitrevskijovan applicationsandtechniquesforfastmachinelearninginscience AT mohammedmohammedattia applicationsandtechniquesforfastmachinelearninginscience AT mokhtarfarouk applicationsandtechniquesforfastmachinelearninginscience AT morenoeric applicationsandtechniquesforfastmachinelearninginscience AT nagusrishti applicationsandtechniquesforfastmachinelearninginscience AT narayanrohin applicationsandtechniquesforfastmachinelearninginscience AT palladinonoah applicationsandtechniquesforfastmachinelearninginscience AT quezhiqiang applicationsandtechniquesforfastmachinelearninginscience AT parksangeon applicationsandtechniquesforfastmachinelearninginscience AT ramamoorthysubramanian applicationsandtechniquesforfastmachinelearninginscience AT rankindylan applicationsandtechniquesforfastmachinelearninginscience AT rothmansimon applicationsandtechniquesforfastmachinelearninginscience AT sharmaashish applicationsandtechniquesforfastmachinelearninginscience AT summerssioni applicationsandtechniquesforfastmachinelearninginscience AT vischiapietro applicationsandtechniquesforfastmachinelearninginscience AT vlimantjeanroch applicationsandtechniquesforfastmachinelearninginscience AT wengolivia applicationsandtechniquesforfastmachinelearninginscience |