Cargando…
General Purpose and Neural Network Approach for Benchmarking Microcontrollers Under Radiation
In this work a testing methodology for micro-controllers exposed to radiation is proposed. General purpose benchmarks are reviewed to provide a mean of testing all the macro-areas of a microcontroller, and a neural network benchmark is introduced as a representative class of novel computing algorith...
Autores principales: | Giordano, Marco, Ferraro, Rudy, Magno, Michele, Danzeca, Salvatore |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/RADECS53308.2021.9954496 http://cds.cern.ch/record/2846298 |
Ejemplares similares
-
Exploring Radiation-Induced Vulnerabilities in RFICs Through Traditional RF Metrics
por: Scialdone, Antonio, et al.
Publicado: (2023) -
COTS Optocoupler Radiation Qualification Process for LHC Applications Based on Mixed-Field Irradiations
por: Ferraro, Rudy, et al.
Publicado: (2020) -
Advanced In-Situ Instrumentation of RF Circuits for Mixed-Field Irradiation Testing Purpose
por: Mueller, Steffen, et al.
Publicado: (2019) -
CANbus and microcontroller use in the BaBar detector at SLAC
por: Crawley, H B, et al.
Publicado: (1999) -
Distributed Optical Fiber Radiation Sensing at CERN
por: Li Vecchi, Gaetano, et al.
Publicado: (2018)