Cargando…
A method for inferring signal strength modifiers by conditional invertible neural networks
The continuous growth in model complexity in high-energy physics (HEP) collider experiments demands increasingly time-consuming model fits. We show first results on the application of conditional invertible networks (cINNs) to this challenge. Specifically, we construct and train a cINN to learn the...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872295 |