Cargando…

A method for inferring signal strength modifiers by conditional invertible neural networks

The continuous growth in model complexity in high-energy physics (HEP) collider experiments demands increasingly time-consuming model fits. We show first results on the application of conditional invertible networks (cINNs) to this challenge. Specifically, we construct and train a cINN to learn the...

Descripción completa

Detalles Bibliográficos
Autores principales: Farkas, Mate Zoltan, Diekmann, Svenja, Eich, Niclas Steve, Erdmann, Martin
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:http://cds.cern.ch/record/2872295