Cargando…
A method for inferring signal strength modifiers by conditional invertible neural networks
The continuous growth in model complexity in high-energy physics (HEP) collider experiments demands increasingly time-consuming model fits. We show first results on the application of conditional invertible networks (cINNs) to this challenge. Specifically, we construct and train a cINN to learn the...
Autores principales: | Farkas, Mate Zoltan, Diekmann, Svenja, Eich, Niclas Steve, Erdmann, Martin |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872295 |
Ejemplares similares
-
A Method for Inferring Signal Strength Modifiers by Conditional Invertible Neural Networks
por: CMS Collaboration
Publicado: (2023) -
Model of a rapid field inverter
por: Pflumm, H
Publicado: (1965) -
Results of Tests of Inverted Double Gap RPC at the CERN GIF Facility
por: Czyrkowski, Henryk, et al.
Publicado: (1998) -
Conditional Invertible Neural Networks for Medical Imaging
por: Denker, Alexander, et al.
Publicado: (2021) -
Beam test results of inverted double Gap RPCs with high counting rate capability for the CMS experiment
por: Czyrkowski, Henryk, et al.
Publicado: (1997)