Cargando…

The $B_{c}$ mass up to order $\alpha_{s}^{4}$

We evaluate in perturbative QCD, up to order $\alpha_s^4$, the mass of the$B_c$. We use the so-called 1S-mass in order to improve the convergence of theperturbative series. Our result is $E(B_c)_{pert} = 6323^{+3 +7}_{-1 -6}$ MeV.Non-perturbative effects are discussed. An estimate in terms of localc...

Descripción completa

Detalles Bibliográficos
Autores principales: Brambilla, Nora, Vairo, Antonio
Lenguaje:eng
Publicado: 2000
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.62.094019
http://cds.cern.ch/record/425942
_version_ 1780895066484637696
author Brambilla, Nora
Vairo, Antonio
author_facet Brambilla, Nora
Vairo, Antonio
author_sort Brambilla, Nora
collection CERN
description We evaluate in perturbative QCD, up to order $\alpha_s^4$, the mass of the$B_c$. We use the so-called 1S-mass in order to improve the convergence of theperturbative series. Our result is $E(B_c)_{pert} = 6323^{+3 +7}_{-1 -6}$ MeV.Non-perturbative effects are discussed. An estimate in terms of localcondensates and a comparison with potential models seem to be consistent withnon-perturbative contributions of the order $ - (40\div 80)$ MeV.
id cern-425942
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2000
record_format invenio
spelling cern-4259422023-02-27T03:51:46Zdoi:10.1103/PhysRevD.62.094019http://cds.cern.ch/record/425942engBrambilla, NoraVairo, AntonioThe $B_{c}$ mass up to order $\alpha_{s}^{4}$Particle Physics - PhenomenologyWe evaluate in perturbative QCD, up to order $\alpha_s^4$, the mass of the$B_c$. We use the so-called 1S-mass in order to improve the convergence of theperturbative series. Our result is $E(B_c)_{pert} = 6323^{+3 +7}_{-1 -6}$ MeV.Non-perturbative effects are discussed. An estimate in terms of localcondensates and a comparison with potential models seem to be consistent withnon-perturbative contributions of the order $ - (40\div 80)$ MeV.We evaluate in perturbative QCD, up to order $\alpha_s^4$, the mass of the $B_c$. We use the so-called 1S-mass in order to improve the convergence of the perturbative series. Our result is $E(B_c)_{pert} = 6326^{+29}_{-9}$ MeV. Non-perturbative effects are discussed. A comparison with potential models seems to be consistent with non-perturbative contributions of the order $ - (40\div 100)$ MeV.hep-ph/0002075CERN-TH-2000-036CERN-TH-2000-036oai:cds.cern.ch:4259422000-02-07
spellingShingle Particle Physics - Phenomenology
Brambilla, Nora
Vairo, Antonio
The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title_full The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title_fullStr The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title_full_unstemmed The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title_short The $B_{c}$ mass up to order $\alpha_{s}^{4}$
title_sort $b_{c}$ mass up to order $\alpha_{s}^{4}$
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.62.094019
http://cds.cern.ch/record/425942
work_keys_str_mv AT brambillanora thebcmassuptoorderalphas4
AT vairoantonio thebcmassuptoorderalphas4
AT brambillanora bcmassuptoorderalphas4
AT vairoantonio bcmassuptoorderalphas4