Cargando…
$\delta$-convexity in normed linear spaces
For some given positive $\delta$, a function $f:D\subseteq X\to\RR$ is called $\delta$-convex if it satisfies the Jensen inequality $f(x_\lambda)\leq(1-\lambda)f(x_0)+\lambda f(x_1)$ for all $x_0, x_1\in D$ and $x_\lambda\colon=(1-\lambda)x_0+\lambda x_1 \in [x_0,x_1]$ satisfying $\|x_0-x_1\|\ge\del...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/645645 |