Cargando…
$\delta$-convexity in normed linear spaces
For some given positive $\delta$, a function $f:D\subseteq X\to\RR$ is called $\delta$-convex if it satisfies the Jensen inequality $f(x_\lambda)\leq(1-\lambda)f(x_0)+\lambda f(x_1)$ for all $x_0, x_1\in D$ and $x_\lambda\colon=(1-\lambda)x_0+\lambda x_1 \in [x_0,x_1]$ satisfying $\|x_0-x_1\|\ge\del...
Autores principales: | An, P T, Hai, N N |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/645645 |
Ejemplares similares
-
On asphericity of convex bodies in linear normed spaces
por: Faried, Nashat, et al.
Publicado: (2018) -
Rough convergence in normed linear spaces
por: Phu, H X
Publicado: (2000) -
Convex optimization in normed spaces: theory, methods and examples
por: Peypouquet, Juan
Publicado: (2015) -
Picard iterations for solution of nonlinear equations in normed linear spaces
por: Moore, Cristopher
Publicado: (2000) -
Normed linear spaces
por: Day, Mahlon M
Publicado: (1962)