Cargando…
Design of low-power, low-voltage, differential I/O links for High Energy Physics applications
This work presents the design of a low-power, differential signaling, input/output data link in a 65 nm CMOS process for high energy physics (HEP) experiments. The proposed driver, able to operate at 320 Mbps or 640 Mbps with a normalized power dissipation of 3.125 mW/Gbps, is meant to drive short d...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/10/01/C01055 http://cds.cern.ch/record/2158929 |
_version_ | 1780950797109952512 |
---|---|
author | Traversi, G Bonacini, S De Canio, F Gaioni, L Kloukinas, K Manghisoni, M Ratti, L Re, V |
author_facet | Traversi, G Bonacini, S De Canio, F Gaioni, L Kloukinas, K Manghisoni, M Ratti, L Re, V |
author_sort | Traversi, G |
collection | CERN |
description | This work presents the design of a low-power, differential signaling, input/output data link in a 65 nm CMOS process for high energy physics (HEP) experiments. The proposed driver, able to operate at 320 Mbps or 640 Mbps with a normalized power dissipation of 3.125 mW/Gbps, is meant to drive short distance (between 2 and 10 cm) transmission lines located to the module hybrid circuit. A de-emphasis technique has been adopted to reduce the impedance mismatch effects between the driver output and the transmission line. This paper will discuss in detail the solutions implemented in the design and will describe the simulation results. |
id | oai-inspirehep.net-1342329 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2015 |
record_format | invenio |
spelling | oai-inspirehep.net-13423292019-09-30T06:29:59Zdoi:10.1088/1748-0221/10/01/C01055http://cds.cern.ch/record/2158929engTraversi, GBonacini, SDe Canio, FGaioni, LKloukinas, KManghisoni, MRatti, LRe, VDesign of low-power, low-voltage, differential I/O links for High Energy Physics applicationsDetectors and Experimental TechniquesThis work presents the design of a low-power, differential signaling, input/output data link in a 65 nm CMOS process for high energy physics (HEP) experiments. The proposed driver, able to operate at 320 Mbps or 640 Mbps with a normalized power dissipation of 3.125 mW/Gbps, is meant to drive short distance (between 2 and 10 cm) transmission lines located to the module hybrid circuit. A de-emphasis technique has been adopted to reduce the impedance mismatch effects between the driver output and the transmission line. This paper will discuss in detail the solutions implemented in the design and will describe the simulation results.oai:inspirehep.net:13423292015 |
spellingShingle | Detectors and Experimental Techniques Traversi, G Bonacini, S De Canio, F Gaioni, L Kloukinas, K Manghisoni, M Ratti, L Re, V Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title | Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title_full | Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title_fullStr | Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title_full_unstemmed | Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title_short | Design of low-power, low-voltage, differential I/O links for High Energy Physics applications |
title_sort | design of low-power, low-voltage, differential i/o links for high energy physics applications |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1088/1748-0221/10/01/C01055 http://cds.cern.ch/record/2158929 |
work_keys_str_mv | AT traversig designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT bonacinis designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT decaniof designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT gaionil designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT kloukinask designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT manghisonim designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT rattil designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications AT rev designoflowpowerlowvoltagedifferentialiolinksforhighenergyphysicsapplications |