Cargando…

GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs

The DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, C M, Jazaeri, F, Pezzotta, A, Bruschini, C, Borghello, G, Faccio, F, Mattiazzo, S, Baschirotto, A, Enz, C
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1109/NSSMIC.2016.8069869
http://cds.cern.ch/record/2622271
_version_ 1780958642151882752
author Zhang, C M
Jazaeri, F
Pezzotta, A
Bruschini, C
Borghello, G
Faccio, F
Mattiazzo, S
Baschirotto, A
Enz, C
author_facet Zhang, C M
Jazaeri, F
Pezzotta, A
Bruschini, C
Borghello, G
Faccio, F
Mattiazzo, S
Baschirotto, A
Enz, C
author_sort Zhang, C M
collection CERN
description The DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for $n$MOSFETs.
id oai-inspirehep.net-1637974
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling oai-inspirehep.net-16379742019-09-30T06:29:59Zdoi:10.1109/NSSMIC.2016.8069869http://cds.cern.ch/record/2622271engZhang, C MJazaeri, FPezzotta, ABruschini, CBorghello, GFaccio, FMattiazzo, SBaschirotto, AEnz, CGigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETsDetectors and Experimental TechniquesThe DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for $n$MOSFETs.oai:inspirehep.net:16379742017
spellingShingle Detectors and Experimental Techniques
Zhang, C M
Jazaeri, F
Pezzotta, A
Bruschini, C
Borghello, G
Faccio, F
Mattiazzo, S
Baschirotto, A
Enz, C
GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title_full GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title_fullStr GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title_full_unstemmed GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title_short GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
title_sort gigarad total ionizing dose and post-irradiation effects on 28 nm bulk mosfets
topic Detectors and Experimental Techniques
url https://dx.doi.org/10.1109/NSSMIC.2016.8069869
http://cds.cern.ch/record/2622271
work_keys_str_mv AT zhangcm gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT jazaerif gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT pezzottaa gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT bruschinic gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT borghellog gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT facciof gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT mattiazzos gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT baschirottoa gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets
AT enzc gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets