Cargando…
GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs
The DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/NSSMIC.2016.8069869 http://cds.cern.ch/record/2622271 |
_version_ | 1780958642151882752 |
---|---|
author | Zhang, C M Jazaeri, F Pezzotta, A Bruschini, C Borghello, G Faccio, F Mattiazzo, S Baschirotto, A Enz, C |
author_facet | Zhang, C M Jazaeri, F Pezzotta, A Bruschini, C Borghello, G Faccio, F Mattiazzo, S Baschirotto, A Enz, C |
author_sort | Zhang, C M |
collection | CERN |
description | The DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for $n$MOSFETs. |
id | oai-inspirehep.net-1637974 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16379742019-09-30T06:29:59Zdoi:10.1109/NSSMIC.2016.8069869http://cds.cern.ch/record/2622271engZhang, C MJazaeri, FPezzotta, ABruschini, CBorghello, GFaccio, FMattiazzo, SBaschirotto, AEnz, CGigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETsDetectors and Experimental TechniquesThe DC performance of both $n$- and $p$MOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for $n$MOSFETs.oai:inspirehep.net:16379742017 |
spellingShingle | Detectors and Experimental Techniques Zhang, C M Jazaeri, F Pezzotta, A Bruschini, C Borghello, G Faccio, F Mattiazzo, S Baschirotto, A Enz, C GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title | GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title_full | GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title_fullStr | GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title_full_unstemmed | GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title_short | GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs |
title_sort | gigarad total ionizing dose and post-irradiation effects on 28 nm bulk mosfets |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1109/NSSMIC.2016.8069869 http://cds.cern.ch/record/2622271 |
work_keys_str_mv | AT zhangcm gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT jazaerif gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT pezzottaa gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT bruschinic gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT borghellog gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT facciof gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT mattiazzos gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT baschirottoa gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets AT enzc gigaradtotalionizingdoseandpostirradiationeffectson28nmbulkmosfets |