Cargando…
Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA
In recent years, field-programmable gate array (FPGA) devices have attracted a lot of attentions due to the increasing performance they provide thanks to technology scaling, besides their high flexibility through in-field reprogramming and/or partial reconfiguration capability. However, when such de...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TNS.2019.2915207 http://cds.cern.ch/record/2688397 |
_version_ | 1780963721822076928 |
---|---|
author | Du, Boyang Sterpone, Luca Azimi, Sarah Codinachs, David Merodio Ferlet-Cavrois, Véronique Polo, Cesar Boatella García Alía, Rubén Kastriotou, Maria Fernandez-Martínez, Páblo |
author_facet | Du, Boyang Sterpone, Luca Azimi, Sarah Codinachs, David Merodio Ferlet-Cavrois, Véronique Polo, Cesar Boatella García Alía, Rubén Kastriotou, Maria Fernandez-Martínez, Páblo |
author_sort | Du, Boyang |
collection | CERN |
description | In recent years, field-programmable gate array (FPGA) devices have attracted a lot of attentions due to the increasing performance they provide thanks to technology scaling, besides their high flexibility through in-field reprogramming and/or partial reconfiguration capability. However, when such devices are to be deployed in safety- and mission-critical applications such as avionic and space applications, it is mandatory to verify the reliability of the device in the target environment where radiation effect is considered as one of the major sources of faults in the system. For static random access memory (SRAM)-based FPGA devices, the SRAM cells holding the configuration data for the circuit implemented on the devices are highly susceptible against single-event upset (SEU) induced by charged particle striking the device and one single SEU in the configuration memory may corrupt the implemented circuit design causing system misbehavior. In this paper, we present the radiation test data on Xilinx Kintex-7 SRAM-based FPGA using ultrahigh energy heavy-ion test beam for the first time available to third-party radiation test in CERN. |
id | oai-inspirehep.net-1750200 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | oai-inspirehep.net-17502002019-09-30T06:29:59Zdoi:10.1109/TNS.2019.2915207http://cds.cern.ch/record/2688397engDu, BoyangSterpone, LucaAzimi, SarahCodinachs, David MerodioFerlet-Cavrois, VéroniquePolo, Cesar BoatellaGarcía Alía, RubénKastriotou, MariaFernandez-Martínez, PábloUltrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGADetectors and Experimental TechniquesIn recent years, field-programmable gate array (FPGA) devices have attracted a lot of attentions due to the increasing performance they provide thanks to technology scaling, besides their high flexibility through in-field reprogramming and/or partial reconfiguration capability. However, when such devices are to be deployed in safety- and mission-critical applications such as avionic and space applications, it is mandatory to verify the reliability of the device in the target environment where radiation effect is considered as one of the major sources of faults in the system. For static random access memory (SRAM)-based FPGA devices, the SRAM cells holding the configuration data for the circuit implemented on the devices are highly susceptible against single-event upset (SEU) induced by charged particle striking the device and one single SEU in the configuration memory may corrupt the implemented circuit design causing system misbehavior. In this paper, we present the radiation test data on Xilinx Kintex-7 SRAM-based FPGA using ultrahigh energy heavy-ion test beam for the first time available to third-party radiation test in CERN.oai:inspirehep.net:17502002019 |
spellingShingle | Detectors and Experimental Techniques Du, Boyang Sterpone, Luca Azimi, Sarah Codinachs, David Merodio Ferlet-Cavrois, Véronique Polo, Cesar Boatella García Alía, Rubén Kastriotou, Maria Fernandez-Martínez, Páblo Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title | Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title_full | Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title_fullStr | Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title_full_unstemmed | Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title_short | Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA |
title_sort | ultrahigh energy heavy ion test beam on xilinx kintex-7 sram-based fpga |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1109/TNS.2019.2915207 http://cds.cern.ch/record/2688397 |
work_keys_str_mv | AT duboyang ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT sterponeluca ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT azimisarah ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT codinachsdavidmerodio ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT ferletcavroisveronique ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT polocesarboatella ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT garciaaliaruben ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT kastriotoumaria ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga AT fernandezmartinezpablo ultrahighenergyheavyiontestbeamonxilinxkintex7srambasedfpga |