Cargando…

Sample-efficient reinforcement learning for CERN accelerator control

Numerical optimization algorithms are already established tools to increase and stabilize the performance of particle accelerators. These algorithms have many advantages, are available out of the box, and can be adapted to a wide range of optimization problems in accelerator operation. The next boos...

Descripción completa

Detalles Bibliográficos
Autores principales: Kain, Verena, Hirlander, Simon, Goddard, Brennan, Velotti, Francesco Maria, Zevi Della Porta, Giovanni, Bruchon, Niky, Valentino, Gianluca
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.23.124801
http://cds.cern.ch/record/2747760