Cargando…
Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measur...
Autores principales: | Nelson, Anders R., Christiansen, Steven L., Naegle, Kristen M., Saucerman, Jeffrey J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002757/ https://www.ncbi.nlm.nih.gov/pubmed/36909540 http://dx.doi.org/10.1101/2023.03.01.530599 |
Ejemplares similares
-
Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling
por: Rikard, S. Michaela, et al.
Publicado: (2019) -
Network model‐based screen for FDA‐approved drugs affecting cardiac fibrosis
por: Zeigler, Angela C., et al.
Publicado: (2021) -
Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts
por: Rogers, Jesse D., et al.
Publicado: (2020) -
Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy
por: Khalilimeybodi, Ali, et al.
Publicado: (2020) -
Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model
por: Kraeutler, Matthew J, et al.
Publicado: (2010)