Cargando…
Resveratrol Modulates Chemosensitisation to 5-FU via β1-Integrin/HIF-1α Axis in CRC Tumor Microenvironment
Frequent development of resistance to chemotherapeutic agents such as 5-flourouracil (5-FU) complicates the treatment of advanced colorectal cancer (CRC). Resveratrol is able to utilize β1-integrin receptors, strongly expressed in CRC cells, to transmit and exert anti-carcinogenic signals, but wheth...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003050/ https://www.ncbi.nlm.nih.gov/pubmed/36902421 http://dx.doi.org/10.3390/ijms24054988 |
Sumario: | Frequent development of resistance to chemotherapeutic agents such as 5-flourouracil (5-FU) complicates the treatment of advanced colorectal cancer (CRC). Resveratrol is able to utilize β1-integrin receptors, strongly expressed in CRC cells, to transmit and exert anti-carcinogenic signals, but whether it can also utilize these receptors to overcome 5-FU chemoresistance in CRC cells has not yet been investigated. Effects of β1-integrin knockdown on anti-cancer capabilities of resveratrol and 5-FU were investigated in HCT-116 and 5-FU-resistant HCT-116R CRC tumor microenvironment (TME) with 3D-alginate as well as monolayer cultures. Resveratrol increased CRC cell sensitivity to 5-FU by reducing TME-promoted vitality, proliferation, colony formation, invasion tendency and mesenchymal phenotype including pro-migration pseudopodia. Furthermore, resveratrol impaired CRC cells in favor of more effective utilization of 5-FU by down-regulating TME-induced inflammation (NF-kB), vascularisation (VEGF, HIF-1α) and cancer stem cell production (CD44, CD133, ALDH1), while up-regulating apoptosis (caspase-3) that was previously inhibited by TME. These anti-cancer mechanisms of resveratrol were largely abolished by antisense oligonucleotides against β1-integrin (β1-ASO) in both CRC cell lines, indicating the particular importance of β1-integrin receptors for the 5-FU-chemosensitising effect of resveratrol. Lastly, co-immunoprecipitation tests showed that resveratrol targets and modulates the TME-associated β1-integrin/HIF-1α signaling axis in CRC cells. Our results suggest for the first time the utility of the β1-integrin/HIF-1α signaling axis related to chemosensitization and overcoming chemoresistance to 5-FU in CRC cells by resveratrol, underlining its potential supportive applications in CRC treatment. |
---|