Cargando…

Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild...

Descripción completa

Detalles Bibliográficos
Autores principales: Benssouina, Fatima-Zahra, Parat, Fabrice, Villard, Claude, Leloup, Ludovic, Garrouste, Françoise, Sabatier, Jean-marc, Ferhat, Lotfi, Kovacic, Hervé
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003393/
https://www.ncbi.nlm.nih.gov/pubmed/36902094
http://dx.doi.org/10.3390/ijms24054663
_version_ 1784904596760559616
author Benssouina, Fatima-Zahra
Parat, Fabrice
Villard, Claude
Leloup, Ludovic
Garrouste, Françoise
Sabatier, Jean-marc
Ferhat, Lotfi
Kovacic, Hervé
author_facet Benssouina, Fatima-Zahra
Parat, Fabrice
Villard, Claude
Leloup, Ludovic
Garrouste, Françoise
Sabatier, Jean-marc
Ferhat, Lotfi
Kovacic, Hervé
author_sort Benssouina, Fatima-Zahra
collection PubMed
description Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance.
format Online
Article
Text
id pubmed-10003393
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100033932023-03-11 Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation Benssouina, Fatima-Zahra Parat, Fabrice Villard, Claude Leloup, Ludovic Garrouste, Françoise Sabatier, Jean-marc Ferhat, Lotfi Kovacic, Hervé Int J Mol Sci Article Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance. MDPI 2023-02-28 /pmc/articles/PMC10003393/ /pubmed/36902094 http://dx.doi.org/10.3390/ijms24054663 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Benssouina, Fatima-Zahra
Parat, Fabrice
Villard, Claude
Leloup, Ludovic
Garrouste, Françoise
Sabatier, Jean-marc
Ferhat, Lotfi
Kovacic, Hervé
Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title_full Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title_fullStr Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title_full_unstemmed Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title_short Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation
title_sort overexpression of a novel noxo1 mutant increases ros production and noxo1 relocalisation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003393/
https://www.ncbi.nlm.nih.gov/pubmed/36902094
http://dx.doi.org/10.3390/ijms24054663
work_keys_str_mv AT benssouinafatimazahra overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT paratfabrice overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT villardclaude overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT leloupludovic overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT garroustefrancoise overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT sabatierjeanmarc overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT ferhatlotfi overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation
AT kovacicherve overexpressionofanovelnoxo1mutantincreasesrosproductionandnoxo1relocalisation