Cargando…
Acyl carrier protein tag can enhance tobacco etch virus protease stability and promote its covalent immobilisation
ABSTRACT: Fusion expression is widely employed to enhance the solubility of recombinant proteins. However, removal of the fusion tag is often required due to its potential impact on the structure and activity of passenger proteins. Tobacco etch virus (TEV) protease is widely used for this purpose du...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006060/ https://www.ncbi.nlm.nih.gov/pubmed/36763116 http://dx.doi.org/10.1007/s00253-023-12377-8 |
Sumario: | ABSTRACT: Fusion expression is widely employed to enhance the solubility of recombinant proteins. However, removal of the fusion tag is often required due to its potential impact on the structure and activity of passenger proteins. Tobacco etch virus (TEV) protease is widely used for this purpose due to its stringent sequence recognition. In the present work, fusion to the acyl carrier protein from E. coli fatty acid synthase (ACP) significantly increased the yield of recombinant soluble TEV, and the ACP tag also greatly improved TEV stability. The cleavage activity of TEV was not affected by the ACP fusion tag, and ACP-TEV retained high activity, even at unfavourable pH values. Moreover, ACP-TEV could be efficiently modified by co-expressed E. coli holo-ACP synthase (AcpS), leading to covalent attachment of 4′-phosphopantetheine (4′-PP) group to ACP. The sulfhydryl group of the long, flexible 4′-PP chain displayed high specific reactivity with iodoacetyl groups on the solid support. Thus, TEV could be immobilised effectively and conveniently via the active holo-ACP, and immobilised TEV retained high cleavage activity after a long storage period and several cycles of reuse. As a low-cost and recyclable biocatalyst, TEV immobilised by this method holds promise for biotechnological research and development. KEY POINTS: • The ACP tag greatly increased the soluble expression and stability of TEV protease. • The ACP tag did not affect the cleavage activity of TEV. • The holo-ACP Tag effectively mediated the covalent immobilisation of TEV. |
---|