Cargando…
FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment
Federated learning (FL) is a technique that allows multiple clients to collaboratively train a global model without sharing their sensitive and bandwidth-hungry data. This paper presents a joint early client termination and local epoch adjustment for FL. We consider the challenges of heterogeneous I...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006882/ https://www.ncbi.nlm.nih.gov/pubmed/36904696 http://dx.doi.org/10.3390/s23052494 |