Cargando…
FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment
Federated learning (FL) is a technique that allows multiple clients to collaboratively train a global model without sharing their sensitive and bandwidth-hungry data. This paper presents a joint early client termination and local epoch adjustment for FL. We consider the challenges of heterogeneous I...
Autores principales: | Wong, Yi Jie, Tham, Mau-Luen, Kwan, Ban-Hoe, Owada, Yasunori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006882/ https://www.ncbi.nlm.nih.gov/pubmed/36904696 http://dx.doi.org/10.3390/s23052494 |
Ejemplares similares
-
Mobility-Aware Resource Allocation in IoRT Network for Post-Disaster Communications with Parameterized Reinforcement Learning
por: Kabir, Homayun, et al.
Publicado: (2023) -
A Comprehensive Overview of IoT-Based Federated Learning: Focusing on Client Selection Methods
por: Khajehali, Naghmeh, et al.
Publicado: (2023) -
FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records
por: Bebortta, Sujit, et al.
Publicado: (2023) -
CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications
por: Kirtania, Sharadindu Gopal, et al.
Publicado: (2021) -
Data Work: How Energy Advisors and Clients Make IoT Data Accountable
por: Fischer, Joel E., et al.
Publicado: (2017)