Cargando…
A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1
Methamphetamine (MA) is spread worldwide and is a highly addictive psychostimulant that can induce neurodegeneration and cognitive disorder, which lacks effective treatments. We and other researchers have found that the crucial member of Hsp70 chaperone machinery, DnaJ, is liable to be co-aggregated...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009643/ https://www.ncbi.nlm.nih.gov/pubmed/36923951 http://dx.doi.org/10.1016/j.omtn.2023.02.017 |
_version_ | 1784906028694896640 |
---|---|
author | Zhang, Mengru Chen, Cheng Peng, Qingyan Wu, Xiaocong Zhou, Ruiyi Ma, Yuru Zou, Zhurong |
author_facet | Zhang, Mengru Chen, Cheng Peng, Qingyan Wu, Xiaocong Zhou, Ruiyi Ma, Yuru Zou, Zhurong |
author_sort | Zhang, Mengru |
collection | PubMed |
description | Methamphetamine (MA) is spread worldwide and is a highly addictive psychostimulant that can induce neurodegeneration and cognitive disorder, which lacks effective treatments. We and other researchers have found that the crucial member of Hsp70 chaperone machinery, DnaJ, is liable to be co-aggregated with aberrant proteins, which has been confirmed a risk factor to promote neurodegeneration. In the current study, we demonstrated that tailing with a hyper-acidic fusion partner, tua2, human DnaJB1 could resist the formation of toxic mutant Tau aggregates both in prokaryote and eukaryote models. We found that aberrant Tau aggregates could deplete the antioxidant enzyme pool and disturb Hsp70 molecular chaperone system by co-aggregating with the principal members of these systems. Stability-enhanced DnaJB1-tua2 could stop the chain reaction of Tau aggregates as well as maintain redox balance and protein homeostasis. With an MA-induced cognitive disorder mouse model, we found that the cognitive disorder of MA mice was rescued and the overactivated inflammatory response was relieved by the expression of DnaJB1-tua2 in the hippocampus. Furthermore, the Tau neurofibrillary tangles and apoptotic neurons were diminished with the escorting of DnaJB1-tua2. These findings demonstrate that delivering DnaJB1-tua2 in hippocampus may have a therapeutic potential in the treatment of MA-induced cognitive disorder. |
format | Online Article Text |
id | pubmed-10009643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-100096432023-03-14 A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 Zhang, Mengru Chen, Cheng Peng, Qingyan Wu, Xiaocong Zhou, Ruiyi Ma, Yuru Zou, Zhurong Mol Ther Nucleic Acids Original Article Methamphetamine (MA) is spread worldwide and is a highly addictive psychostimulant that can induce neurodegeneration and cognitive disorder, which lacks effective treatments. We and other researchers have found that the crucial member of Hsp70 chaperone machinery, DnaJ, is liable to be co-aggregated with aberrant proteins, which has been confirmed a risk factor to promote neurodegeneration. In the current study, we demonstrated that tailing with a hyper-acidic fusion partner, tua2, human DnaJB1 could resist the formation of toxic mutant Tau aggregates both in prokaryote and eukaryote models. We found that aberrant Tau aggregates could deplete the antioxidant enzyme pool and disturb Hsp70 molecular chaperone system by co-aggregating with the principal members of these systems. Stability-enhanced DnaJB1-tua2 could stop the chain reaction of Tau aggregates as well as maintain redox balance and protein homeostasis. With an MA-induced cognitive disorder mouse model, we found that the cognitive disorder of MA mice was rescued and the overactivated inflammatory response was relieved by the expression of DnaJB1-tua2 in the hippocampus. Furthermore, the Tau neurofibrillary tangles and apoptotic neurons were diminished with the escorting of DnaJB1-tua2. These findings demonstrate that delivering DnaJB1-tua2 in hippocampus may have a therapeutic potential in the treatment of MA-induced cognitive disorder. American Society of Gene & Cell Therapy 2023-02-16 /pmc/articles/PMC10009643/ /pubmed/36923951 http://dx.doi.org/10.1016/j.omtn.2023.02.017 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Zhang, Mengru Chen, Cheng Peng, Qingyan Wu, Xiaocong Zhou, Ruiyi Ma, Yuru Zou, Zhurong A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title | A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title_full | A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title_fullStr | A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title_full_unstemmed | A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title_short | A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1 |
title_sort | novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of dnajb1 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009643/ https://www.ncbi.nlm.nih.gov/pubmed/36923951 http://dx.doi.org/10.1016/j.omtn.2023.02.017 |
work_keys_str_mv | AT zhangmengru anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT chencheng anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT pengqingyan anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT wuxiaocong anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT zhouruiyi anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT mayuru anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT zouzhurong anovelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT zhangmengru novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT chencheng novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT pengqingyan novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT wuxiaocong novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT zhouruiyi novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT mayuru novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 AT zouzhurong novelgenetherapyformethamphetamineinducedcognitivedisorderwithahyperacidifiedfusionvariantofdnajb1 |