Cargando…

The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldswain, Hannah, Dong, Xiaofeng, Penrice-Randal, Rebekah, Alruwaili, Muhannad, Shawli, Ghada T., Prince, Tessa, Williamson, Maia Kavanagh, Raghwani, Jayna, Randle, Nadine, Jones, Benjamin, Donovan-Banfield, I’ah, Salguero, Francisco J., Tree, Julia A., Hall, Yper, Hartley, Catherine, Erdmann, Maximilian, Bazire, James, Jearanaiwitayakul, Tuksin, Semple, Malcolm G., Openshaw, Peter J. M., Baillie, J. Kenneth, Emmett, Stevan R., Digard, Paul, Matthews, David A., Turtle, Lance, Darby, Alistair C., Davidson, Andrew D., Carroll, Miles W., Hiscox, Julian A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009825/
https://www.ncbi.nlm.nih.gov/pubmed/36915185
http://dx.doi.org/10.1186/s13059-023-02881-5
_version_ 1784906064196534272
author Goldswain, Hannah
Dong, Xiaofeng
Penrice-Randal, Rebekah
Alruwaili, Muhannad
Shawli, Ghada T.
Prince, Tessa
Williamson, Maia Kavanagh
Raghwani, Jayna
Randle, Nadine
Jones, Benjamin
Donovan-Banfield, I’ah
Salguero, Francisco J.
Tree, Julia A.
Hall, Yper
Hartley, Catherine
Erdmann, Maximilian
Bazire, James
Jearanaiwitayakul, Tuksin
Semple, Malcolm G.
Openshaw, Peter J. M.
Baillie, J. Kenneth
Emmett, Stevan R.
Digard, Paul
Matthews, David A.
Turtle, Lance
Darby, Alistair C.
Davidson, Andrew D.
Carroll, Miles W.
Hiscox, Julian A.
author_facet Goldswain, Hannah
Dong, Xiaofeng
Penrice-Randal, Rebekah
Alruwaili, Muhannad
Shawli, Ghada T.
Prince, Tessa
Williamson, Maia Kavanagh
Raghwani, Jayna
Randle, Nadine
Jones, Benjamin
Donovan-Banfield, I’ah
Salguero, Francisco J.
Tree, Julia A.
Hall, Yper
Hartley, Catherine
Erdmann, Maximilian
Bazire, James
Jearanaiwitayakul, Tuksin
Semple, Malcolm G.
Openshaw, Peter J. M.
Baillie, J. Kenneth
Emmett, Stevan R.
Digard, Paul
Matthews, David A.
Turtle, Lance
Darby, Alistair C.
Davidson, Andrew D.
Carroll, Miles W.
Hiscox, Julian A.
author_sort Goldswain, Hannah
collection PubMed
description BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02881-5.
format Online
Article
Text
id pubmed-10009825
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-100098252023-03-13 The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection Goldswain, Hannah Dong, Xiaofeng Penrice-Randal, Rebekah Alruwaili, Muhannad Shawli, Ghada T. Prince, Tessa Williamson, Maia Kavanagh Raghwani, Jayna Randle, Nadine Jones, Benjamin Donovan-Banfield, I’ah Salguero, Francisco J. Tree, Julia A. Hall, Yper Hartley, Catherine Erdmann, Maximilian Bazire, James Jearanaiwitayakul, Tuksin Semple, Malcolm G. Openshaw, Peter J. M. Baillie, J. Kenneth Emmett, Stevan R. Digard, Paul Matthews, David A. Turtle, Lance Darby, Alistair C. Davidson, Andrew D. Carroll, Miles W. Hiscox, Julian A. Genome Biol Research BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02881-5. BioMed Central 2023-03-13 /pmc/articles/PMC10009825/ /pubmed/36915185 http://dx.doi.org/10.1186/s13059-023-02881-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Goldswain, Hannah
Dong, Xiaofeng
Penrice-Randal, Rebekah
Alruwaili, Muhannad
Shawli, Ghada T.
Prince, Tessa
Williamson, Maia Kavanagh
Raghwani, Jayna
Randle, Nadine
Jones, Benjamin
Donovan-Banfield, I’ah
Salguero, Francisco J.
Tree, Julia A.
Hall, Yper
Hartley, Catherine
Erdmann, Maximilian
Bazire, James
Jearanaiwitayakul, Tuksin
Semple, Malcolm G.
Openshaw, Peter J. M.
Baillie, J. Kenneth
Emmett, Stevan R.
Digard, Paul
Matthews, David A.
Turtle, Lance
Darby, Alistair C.
Davidson, Andrew D.
Carroll, Miles W.
Hiscox, Julian A.
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title_full The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title_fullStr The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title_full_unstemmed The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title_short The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
title_sort p323l substitution in the sars-cov-2 polymerase (nsp12) confers a selective advantage during infection
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009825/
https://www.ncbi.nlm.nih.gov/pubmed/36915185
http://dx.doi.org/10.1186/s13059-023-02881-5
work_keys_str_mv AT goldswainhannah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT dongxiaofeng thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT penricerandalrebekah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT alruwailimuhannad thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT shawlighadat thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT princetessa thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT williamsonmaiakavanagh thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT raghwanijayna thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT randlenadine thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT jonesbenjamin thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT donovanbanfieldiah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT salguerofranciscoj thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT treejuliaa thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hallyper thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hartleycatherine thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT erdmannmaximilian thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT bazirejames thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT jearanaiwitayakultuksin thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT semplemalcolmg thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT openshawpeterjm thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT bailliejkenneth thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT emmettstevanr thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT digardpaul thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT matthewsdavida thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT turtlelance thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT darbyalistairc thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT davidsonandrewd thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT carrollmilesw thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hiscoxjuliana thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT goldswainhannah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT dongxiaofeng p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT penricerandalrebekah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT alruwailimuhannad p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT shawlighadat p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT princetessa p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT williamsonmaiakavanagh p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT raghwanijayna p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT randlenadine p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT jonesbenjamin p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT donovanbanfieldiah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT salguerofranciscoj p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT treejuliaa p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hallyper p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hartleycatherine p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT erdmannmaximilian p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT bazirejames p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT jearanaiwitayakultuksin p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT semplemalcolmg p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT openshawpeterjm p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT bailliejkenneth p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT emmettstevanr p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT digardpaul p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT matthewsdavida p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT turtlelance p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT darbyalistairc p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT davidsonandrewd p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT carrollmilesw p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection
AT hiscoxjuliana p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection