Cargando…
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection
BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009825/ https://www.ncbi.nlm.nih.gov/pubmed/36915185 http://dx.doi.org/10.1186/s13059-023-02881-5 |
_version_ | 1784906064196534272 |
---|---|
author | Goldswain, Hannah Dong, Xiaofeng Penrice-Randal, Rebekah Alruwaili, Muhannad Shawli, Ghada T. Prince, Tessa Williamson, Maia Kavanagh Raghwani, Jayna Randle, Nadine Jones, Benjamin Donovan-Banfield, I’ah Salguero, Francisco J. Tree, Julia A. Hall, Yper Hartley, Catherine Erdmann, Maximilian Bazire, James Jearanaiwitayakul, Tuksin Semple, Malcolm G. Openshaw, Peter J. M. Baillie, J. Kenneth Emmett, Stevan R. Digard, Paul Matthews, David A. Turtle, Lance Darby, Alistair C. Davidson, Andrew D. Carroll, Miles W. Hiscox, Julian A. |
author_facet | Goldswain, Hannah Dong, Xiaofeng Penrice-Randal, Rebekah Alruwaili, Muhannad Shawli, Ghada T. Prince, Tessa Williamson, Maia Kavanagh Raghwani, Jayna Randle, Nadine Jones, Benjamin Donovan-Banfield, I’ah Salguero, Francisco J. Tree, Julia A. Hall, Yper Hartley, Catherine Erdmann, Maximilian Bazire, James Jearanaiwitayakul, Tuksin Semple, Malcolm G. Openshaw, Peter J. M. Baillie, J. Kenneth Emmett, Stevan R. Digard, Paul Matthews, David A. Turtle, Lance Darby, Alistair C. Davidson, Andrew D. Carroll, Miles W. Hiscox, Julian A. |
author_sort | Goldswain, Hannah |
collection | PubMed |
description | BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02881-5. |
format | Online Article Text |
id | pubmed-10009825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-100098252023-03-13 The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection Goldswain, Hannah Dong, Xiaofeng Penrice-Randal, Rebekah Alruwaili, Muhannad Shawli, Ghada T. Prince, Tessa Williamson, Maia Kavanagh Raghwani, Jayna Randle, Nadine Jones, Benjamin Donovan-Banfield, I’ah Salguero, Francisco J. Tree, Julia A. Hall, Yper Hartley, Catherine Erdmann, Maximilian Bazire, James Jearanaiwitayakul, Tuksin Semple, Malcolm G. Openshaw, Peter J. M. Baillie, J. Kenneth Emmett, Stevan R. Digard, Paul Matthews, David A. Turtle, Lance Darby, Alistair C. Davidson, Andrew D. Carroll, Miles W. Hiscox, Julian A. Genome Biol Research BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02881-5. BioMed Central 2023-03-13 /pmc/articles/PMC10009825/ /pubmed/36915185 http://dx.doi.org/10.1186/s13059-023-02881-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Goldswain, Hannah Dong, Xiaofeng Penrice-Randal, Rebekah Alruwaili, Muhannad Shawli, Ghada T. Prince, Tessa Williamson, Maia Kavanagh Raghwani, Jayna Randle, Nadine Jones, Benjamin Donovan-Banfield, I’ah Salguero, Francisco J. Tree, Julia A. Hall, Yper Hartley, Catherine Erdmann, Maximilian Bazire, James Jearanaiwitayakul, Tuksin Semple, Malcolm G. Openshaw, Peter J. M. Baillie, J. Kenneth Emmett, Stevan R. Digard, Paul Matthews, David A. Turtle, Lance Darby, Alistair C. Davidson, Andrew D. Carroll, Miles W. Hiscox, Julian A. The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title | The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title_full | The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title_fullStr | The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title_full_unstemmed | The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title_short | The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection |
title_sort | p323l substitution in the sars-cov-2 polymerase (nsp12) confers a selective advantage during infection |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009825/ https://www.ncbi.nlm.nih.gov/pubmed/36915185 http://dx.doi.org/10.1186/s13059-023-02881-5 |
work_keys_str_mv | AT goldswainhannah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT dongxiaofeng thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT penricerandalrebekah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT alruwailimuhannad thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT shawlighadat thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT princetessa thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT williamsonmaiakavanagh thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT raghwanijayna thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT randlenadine thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT jonesbenjamin thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT donovanbanfieldiah thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT salguerofranciscoj thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT treejuliaa thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hallyper thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hartleycatherine thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT erdmannmaximilian thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT bazirejames thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT jearanaiwitayakultuksin thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT semplemalcolmg thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT openshawpeterjm thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT bailliejkenneth thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT emmettstevanr thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT digardpaul thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT matthewsdavida thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT turtlelance thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT darbyalistairc thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT davidsonandrewd thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT carrollmilesw thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hiscoxjuliana thep323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT goldswainhannah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT dongxiaofeng p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT penricerandalrebekah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT alruwailimuhannad p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT shawlighadat p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT princetessa p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT williamsonmaiakavanagh p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT raghwanijayna p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT randlenadine p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT jonesbenjamin p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT donovanbanfieldiah p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT salguerofranciscoj p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT treejuliaa p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hallyper p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hartleycatherine p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT erdmannmaximilian p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT bazirejames p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT jearanaiwitayakultuksin p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT semplemalcolmg p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT openshawpeterjm p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT bailliejkenneth p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT emmettstevanr p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT digardpaul p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT matthewsdavida p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT turtlelance p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT darbyalistairc p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT davidsonandrewd p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT carrollmilesw p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection AT hiscoxjuliana p323lsubstitutioninthesarscov2polymerasensp12confersaselectiveadvantageduringinfection |