Cargando…
A hybrid deep forest-based method for predicting synergistic drug combinations
Combination therapy is a promising approach in treating multiple complex diseases. However, the large search space of available drug combinations exacerbates challenge for experimental screening. To predict synergistic drug combinations in different cancer cell lines, we propose an improved deep for...
Autores principales: | Wu, Lianlian, Gao, Jie, Zhang, Yixin, Sui, Binsheng, Wen, Yuqi, Wu, Qingqiang, Liu, Kunhong, He, Song, Bo, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014304/ https://www.ncbi.nlm.nih.gov/pubmed/36936075 http://dx.doi.org/10.1016/j.crmeth.2023.100411 |
Ejemplares similares
-
EDST: a decision stump based ensemble algorithm for synergistic drug combination prediction
por: Chen, Jing, et al.
Publicado: (2023) -
Machine learning methods, databases and tools for drug combination prediction
por: Wu, Lianlian, et al.
Publicado: (2021) -
An Algorithm Framework for Drug-Induced Liver Injury Prediction Based on Genetic Algorithm and Ensemble Learning
por: Yan, Bowei, et al.
Publicado: (2022) -
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning
por: Wang, Zhongming, et al.
Publicado: (2023) -
3D vasculature segmentation using localized hybrid level-set method
por: Hong, Qingqi, et al.
Publicado: (2014)