Cargando…

Identification of potential human pancreatic α-amylase inhibitors from natural products by molecular docking, MM/GBSA calculations, MD simulations, and ADMET analysis

Human pancreatic α-amylase (HPA), which works as a catalyst for carbohydrate hydrolysis, is one of the viable targets to control type 2 diabetes. The inhibition of α-amylase lowers blood glucose levels and helps to alleviate hyperglycemia complications. Herein, we systematically screened the potenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Basnet, Santosh, Ghimire, Madhav Prasad, Lamichhane, Tika Ram, Adhikari, Rajendra, Adhikari, Achyut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019617/
https://www.ncbi.nlm.nih.gov/pubmed/36928801
http://dx.doi.org/10.1371/journal.pone.0275765
Descripción
Sumario:Human pancreatic α-amylase (HPA), which works as a catalyst for carbohydrate hydrolysis, is one of the viable targets to control type 2 diabetes. The inhibition of α-amylase lowers blood glucose levels and helps to alleviate hyperglycemia complications. Herein, we systematically screened the potential HPA inhibitors from a library of natural products by molecular modeling. The modeling encompasses molecular docking, MM/GBSA binding energy calculations, MD simulations, and ADMET analysis. This research identified newboulaside B, newboulaside A, quercetin-3-O-β-glucoside, and sasastilboside A as the top four potential HPA inhibitors from the library of natural products, whose Glide docking scores and MM/GBSA binding energies range from -9.191 to -11.366 kcal/mol and -19.38 to -77.95 kcal/mol, respectively. Based on the simulation, among them, newboulaside B was found as the best HPA inhibitor. Throughout the simulation, with the deviation of 3Å (acarbose = 3Å), it interacted with ASP356, ASP300, ASP197, THR163, ARG161, ASP147, ALA106, and GLN63 via hydrogen bonding. Additionally, the comprehensive ADMET analysis revealed that it has good pharmacokinetic properties having not acutely toxic, moderately bioavailable, and non-inhibitor nature toward cytochrome P450. All the results suggest that newboulaside B might be a promising candidate for drug discovery against type 2 diabetes.