Cargando…

Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids

Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous res...

Descripción completa

Detalles Bibliográficos
Autores principales: Stoy, Henriette, Zwicky, Katharina, Kuster, Danina, Lang, Kevin S, Krietsch, Jana, Crossley, Magdalena P., Schmid, Jonas A., Cimprich, Karlene A., Merrikh, Houra, Lopes, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023573/
https://www.ncbi.nlm.nih.gov/pubmed/36864174
http://dx.doi.org/10.1038/s41594-023-00928-6
Descripción
Sumario:Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.