Cargando…
Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation
GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p–i–n structures based on GeSn junctions were fabricated...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025945/ https://www.ncbi.nlm.nih.gov/pubmed/36950705 http://dx.doi.org/10.1039/d3ra00805c |
_version_ | 1784909442415853568 |
---|---|
author | Nawwar, Mohamed A. Abo Ghazala, Magdy S. Sharaf El-Deen, Lobna M. Anis, Badawi El-Shaer, Abdelhamid Elseman, Ahmed Mourtada Rashad, Mohamed M. Kashyout, Abd El-hady B. |
author_facet | Nawwar, Mohamed A. Abo Ghazala, Magdy S. Sharaf El-Deen, Lobna M. Anis, Badawi El-Shaer, Abdelhamid Elseman, Ahmed Mourtada Rashad, Mohamed M. Kashyout, Abd El-hady B. |
author_sort | Nawwar, Mohamed A. |
collection | PubMed |
description | GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p–i–n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds via a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge–As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications. |
format | Online Article Text |
id | pubmed-10025945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-100259452023-03-21 Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation Nawwar, Mohamed A. Abo Ghazala, Magdy S. Sharaf El-Deen, Lobna M. Anis, Badawi El-Shaer, Abdelhamid Elseman, Ahmed Mourtada Rashad, Mohamed M. Kashyout, Abd El-hady B. RSC Adv Chemistry GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p–i–n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds via a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge–As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications. The Royal Society of Chemistry 2023-03-20 /pmc/articles/PMC10025945/ /pubmed/36950705 http://dx.doi.org/10.1039/d3ra00805c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Nawwar, Mohamed A. Abo Ghazala, Magdy S. Sharaf El-Deen, Lobna M. Anis, Badawi El-Shaer, Abdelhamid Elseman, Ahmed Mourtada Rashad, Mohamed M. Kashyout, Abd El-hady B. Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title | Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title_full | Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title_fullStr | Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title_full_unstemmed | Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title_short | Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation |
title_sort | controlling barrier height and spectral responsivity of p–i–n based gesn photodetectors via arsenic incorporation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025945/ https://www.ncbi.nlm.nih.gov/pubmed/36950705 http://dx.doi.org/10.1039/d3ra00805c |
work_keys_str_mv | AT nawwarmohameda controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT aboghazalamagdys controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT sharafeldeenlobnam controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT anisbadawi controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT elshaerabdelhamid controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT elsemanahmedmourtada controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT rashadmohamedm controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation AT kashyoutabdelhadyb controllingbarrierheightandspectralresponsivityofpinbasedgesnphotodetectorsviaarsenicincorporation |