Cargando…

YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells

In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell pop...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Yuchen, Gotz, Carolin, Chincarini, Ginevra, Zhao, Zixuan, Slaney, Clare, Boath, Jarryd, Furic, Luc, Angel, Christopher, Jane, Stephen M., Phillips, Wayne A., Stacker, Steven A., Farah, Camile S., Darido, Charbel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033729/
https://www.ncbi.nlm.nih.gov/pubmed/36949044
http://dx.doi.org/10.1038/s41467-023-37161-0
Descripción
Sumario:In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC.