Cargando…
Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy Provides Mechanistic Insight into the Biginelli Condensation toward the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones as Antiproliferative Agents
[Image: see text] Benchtop nuclear magnetic resonance (NMR) spectroscopy has enabled the monitoring and optimization of chemical transformations while simultaneously providing kinetic, mechanistic, and structural insight into reaction pathways with quantitative precision. Moreover, benchtop NMR prot...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034998/ https://www.ncbi.nlm.nih.gov/pubmed/36969393 http://dx.doi.org/10.1021/acsomega.3c00290 |
_version_ | 1784911331280814080 |
---|---|
author | Chen, Rosie Singh, Pratyush Su, Sarah Kocalar, Selin Wang, Xina Mandava, Neha Venkatesan, Srishti Ferguson, Adrienne Rao, Aishi Le, Emma Rojas, Casey Njoo, Edward |
author_facet | Chen, Rosie Singh, Pratyush Su, Sarah Kocalar, Selin Wang, Xina Mandava, Neha Venkatesan, Srishti Ferguson, Adrienne Rao, Aishi Le, Emma Rojas, Casey Njoo, Edward |
author_sort | Chen, Rosie |
collection | PubMed |
description | [Image: see text] Benchtop nuclear magnetic resonance (NMR) spectroscopy has enabled the monitoring and optimization of chemical transformations while simultaneously providing kinetic, mechanistic, and structural insight into reaction pathways with quantitative precision. Moreover, benchtop NMR proton lock capabilities further allow for rapid and convenient monitoring of various organic reactions in real time, as the use of deuterated solvents is not required. The complementary role of (19)F NMR-based kinetic monitoring in the fluorination of bioactive compounds has many benefits in the drug discovery process since fluorinated motifs additionally improve drug pharmacology. In this study, (19)F NMR spectroscopy was utilized to monitor the synthesis of novel trifluorinated analogs of monastrol, a small molecule dihydropyrimidinone kinesin-Eg5 inhibitor, and to probe the mechanism of the Biginelli cyclocondensation, a multicomponent reaction used to synthesize dihydropyrimidinone and tetrahydropyrimidinones through a Bronsted- or Lewis-acid catalyzed cyclocondensation between ethyl acetoacetate, thiourea, and an aryl aldehyde. In the present study, a trifluorinated ketoester serves a dual purpose as being the source of the trifluoromethyl group in our fluorinated dihydropyrimidinones and as a spectroscopic handle for real-time reaction monitoring and tracking of reactive intermediates by (19)F NMR. Further, upon extending this workflow to a diverse array of 3- and 4-substituted aryl aldehydes, we were able to derive Hammett linear free energy relationships (LFER) to determine stereoelectronic effects of para- and meta-substituted aryl aldehydes to corresponding reaction rates and mechanistic routes. In addition, we used density functional theory (DFT) calculations to corroborate our experimental results through the thermodynamic values of key intermediates in each mechanism. Finally, these studies culminate in the synthesis of a novel trifluorinated analog of monastrol and its subsequent biological evaluation in vitro. More broadly, we show an application of benchtop (19)F NMR spectroscopy as an analytical tool in the real-time investigation of a mechanistically and chemically complex multicomponent reaction mixture. |
format | Online Article Text |
id | pubmed-10034998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100349982023-03-24 Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy Provides Mechanistic Insight into the Biginelli Condensation toward the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones as Antiproliferative Agents Chen, Rosie Singh, Pratyush Su, Sarah Kocalar, Selin Wang, Xina Mandava, Neha Venkatesan, Srishti Ferguson, Adrienne Rao, Aishi Le, Emma Rojas, Casey Njoo, Edward ACS Omega [Image: see text] Benchtop nuclear magnetic resonance (NMR) spectroscopy has enabled the monitoring and optimization of chemical transformations while simultaneously providing kinetic, mechanistic, and structural insight into reaction pathways with quantitative precision. Moreover, benchtop NMR proton lock capabilities further allow for rapid and convenient monitoring of various organic reactions in real time, as the use of deuterated solvents is not required. The complementary role of (19)F NMR-based kinetic monitoring in the fluorination of bioactive compounds has many benefits in the drug discovery process since fluorinated motifs additionally improve drug pharmacology. In this study, (19)F NMR spectroscopy was utilized to monitor the synthesis of novel trifluorinated analogs of monastrol, a small molecule dihydropyrimidinone kinesin-Eg5 inhibitor, and to probe the mechanism of the Biginelli cyclocondensation, a multicomponent reaction used to synthesize dihydropyrimidinone and tetrahydropyrimidinones through a Bronsted- or Lewis-acid catalyzed cyclocondensation between ethyl acetoacetate, thiourea, and an aryl aldehyde. In the present study, a trifluorinated ketoester serves a dual purpose as being the source of the trifluoromethyl group in our fluorinated dihydropyrimidinones and as a spectroscopic handle for real-time reaction monitoring and tracking of reactive intermediates by (19)F NMR. Further, upon extending this workflow to a diverse array of 3- and 4-substituted aryl aldehydes, we were able to derive Hammett linear free energy relationships (LFER) to determine stereoelectronic effects of para- and meta-substituted aryl aldehydes to corresponding reaction rates and mechanistic routes. In addition, we used density functional theory (DFT) calculations to corroborate our experimental results through the thermodynamic values of key intermediates in each mechanism. Finally, these studies culminate in the synthesis of a novel trifluorinated analog of monastrol and its subsequent biological evaluation in vitro. More broadly, we show an application of benchtop (19)F NMR spectroscopy as an analytical tool in the real-time investigation of a mechanistically and chemically complex multicomponent reaction mixture. American Chemical Society 2023-03-10 /pmc/articles/PMC10034998/ /pubmed/36969393 http://dx.doi.org/10.1021/acsomega.3c00290 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Chen, Rosie Singh, Pratyush Su, Sarah Kocalar, Selin Wang, Xina Mandava, Neha Venkatesan, Srishti Ferguson, Adrienne Rao, Aishi Le, Emma Rojas, Casey Njoo, Edward Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy Provides Mechanistic Insight into the Biginelli Condensation toward the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones as Antiproliferative Agents |
title | Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy
Provides Mechanistic Insight into the Biginelli Condensation toward
the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones
as Antiproliferative Agents |
title_full | Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy
Provides Mechanistic Insight into the Biginelli Condensation toward
the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones
as Antiproliferative Agents |
title_fullStr | Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy
Provides Mechanistic Insight into the Biginelli Condensation toward
the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones
as Antiproliferative Agents |
title_full_unstemmed | Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy
Provides Mechanistic Insight into the Biginelli Condensation toward
the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones
as Antiproliferative Agents |
title_short | Benchtop (19)F Nuclear Magnetic Resonance (NMR) Spectroscopy
Provides Mechanistic Insight into the Biginelli Condensation toward
the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones
as Antiproliferative Agents |
title_sort | benchtop (19)f nuclear magnetic resonance (nmr) spectroscopy
provides mechanistic insight into the biginelli condensation toward
the chemical synthesis of novel trifluorinated dihydro- and tetrahydropyrimidinones
as antiproliferative agents |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034998/ https://www.ncbi.nlm.nih.gov/pubmed/36969393 http://dx.doi.org/10.1021/acsomega.3c00290 |
work_keys_str_mv | AT chenrosie benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT singhpratyush benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT susarah benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT kocalarselin benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT wangxina benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT mandavaneha benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT venkatesansrishti benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT fergusonadrienne benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT raoaishi benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT leemma benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT rojascasey benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents AT njooedward benchtop19fnuclearmagneticresonancenmrspectroscopyprovidesmechanisticinsightintothebiginellicondensationtowardthechemicalsynthesisofnoveltrifluorinateddihydroandtetrahydropyrimidinonesasantiproliferativeagents |