Cargando…
Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells
Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translati...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035515/ https://www.ncbi.nlm.nih.gov/pubmed/36968221 http://dx.doi.org/10.1158/2767-9764.CRC-22-0185 |
_version_ | 1784911430610321408 |
---|---|
author | Starr, Renate Aguilar, Brenda Gumber, Diana Maker, Madeleine Huard, Stephanie Wang, Dongrui Chang, Wen-Chung Brito, Alfonso Chiu, Vivian Ostberg, Julie R. Badie, Benham Forman, Stephen J. Alizadeh, Darya Wang, Leo D. Brown, Christine E. |
author_facet | Starr, Renate Aguilar, Brenda Gumber, Diana Maker, Madeleine Huard, Stephanie Wang, Dongrui Chang, Wen-Chung Brito, Alfonso Chiu, Vivian Ostberg, Julie R. Badie, Benham Forman, Stephen J. Alizadeh, Darya Wang, Leo D. Brown, Christine E. |
author_sort | Starr, Renate |
collection | PubMed |
description | Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand–based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)–containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. SIGNIFICANCE: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB–based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings. |
format | Online Article Text |
id | pubmed-10035515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-100355152023-03-24 Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells Starr, Renate Aguilar, Brenda Gumber, Diana Maker, Madeleine Huard, Stephanie Wang, Dongrui Chang, Wen-Chung Brito, Alfonso Chiu, Vivian Ostberg, Julie R. Badie, Benham Forman, Stephen J. Alizadeh, Darya Wang, Leo D. Brown, Christine E. Cancer Res Commun Research Article Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand–based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)–containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. SIGNIFICANCE: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB–based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings. American Association for Cancer Research 2023-01-17 /pmc/articles/PMC10035515/ /pubmed/36968221 http://dx.doi.org/10.1158/2767-9764.CRC-22-0185 Text en © 2023 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by/4.0/This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. |
spellingShingle | Research Article Starr, Renate Aguilar, Brenda Gumber, Diana Maker, Madeleine Huard, Stephanie Wang, Dongrui Chang, Wen-Chung Brito, Alfonso Chiu, Vivian Ostberg, Julie R. Badie, Benham Forman, Stephen J. Alizadeh, Darya Wang, Leo D. Brown, Christine E. Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title | Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title_full | Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title_fullStr | Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title_full_unstemmed | Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title_short | Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells |
title_sort | inclusion of 4-1bb costimulation enhances selectivity and functionality of il13rα2-targeted chimeric antigen receptor t cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035515/ https://www.ncbi.nlm.nih.gov/pubmed/36968221 http://dx.doi.org/10.1158/2767-9764.CRC-22-0185 |
work_keys_str_mv | AT starrrenate inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT aguilarbrenda inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT gumberdiana inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT makermadeleine inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT huardstephanie inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT wangdongrui inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT changwenchung inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT britoalfonso inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT chiuvivian inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT ostbergjulier inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT badiebenham inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT formanstephenj inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT alizadehdarya inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT wangleod inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells AT brownchristinee inclusionof41bbcostimulationenhancesselectivityandfunctionalityofil13ra2targetedchimericantigenreceptortcells |