Cargando…
Root cause prediction for failures in semiconductor industry, a genetic algorithm–machine learning approach
Failure analysis has become an important part of guaranteeing good quality in the electronic component manufacturing process. The conclusions of a failure analysis can be used to identify a component’s flaws and to better understand the mechanisms and causes of failure, allowing for the implementati...
Autores principales: | Rammal, Abbas, Ezukwoke, Kenneth, Hoayek, Anis, Batton-Hubert, Mireille |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043275/ https://www.ncbi.nlm.nih.gov/pubmed/36973298 http://dx.doi.org/10.1038/s41598-023-30769-8 |
Ejemplares similares
-
Prediction of geopolymer pumpability and setting time for well zonal isolation - Using machine learning and statistical based models
por: Hoayek, Anis, et al.
Publicado: (2023) -
Predicting Fluctuating Rates of Hospitalizations in Relation to Influenza Epidemics and Meteorological Factors
por: Spiga, Radia, et al.
Publicado: (2016) -
Machine learning algorithms for industrial applications /
Publicado: (2021) -
Integrating the root cause analysis to machine learning interpretation for predicting future failure
por: Aditiyawarman, Taufik, et al.
Publicado: (2023) -
Machine learning techniques on homological persistence features for prostate cancer diagnosis
por: Rammal, Abbas, et al.
Publicado: (2022)