Cargando…

Antimicrobial Peptides Designed against the Ω-Loop of Class A β-Lactamases to Potentiate the Efficacy of β-Lactam Antibiotics

Class A serine β-lactamases (SBLs) have a conserved non-active site structural domain called the omega loop (Ω-loop), in which a glutamic acid residue is believed to be directly involved in the hydrolysis of β-lactam antibiotics by providing a water molecule during catalysis. We aimed to design and...

Descripción completa

Detalles Bibliográficos
Autores principales: Biswal, Sarmistha, Caetano, Karina, Jain, Diamond, Sarrila, Anusha, Munshi, Tulika, Dickman, Rachael, Tabor, Alethea B., Rath, Surya Narayan, Bhakta, Sanjib, Ghosh, Anindya S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044640/
https://www.ncbi.nlm.nih.gov/pubmed/36978420
http://dx.doi.org/10.3390/antibiotics12030553
Descripción
Sumario:Class A serine β-lactamases (SBLs) have a conserved non-active site structural domain called the omega loop (Ω-loop), in which a glutamic acid residue is believed to be directly involved in the hydrolysis of β-lactam antibiotics by providing a water molecule during catalysis. We aimed to design and characterise potential pentapeptides to mask the function of the Ω-loop of β-lactamases and reduce their efficacy, along with potentiating the β-lactam antibiotics and eventually decreasing β-lactam resistance. Considering the Ω-loop sequence as a template, a group of pentapeptide models were designed, validated through docking, and synthesised using solid-phase peptide synthesis (SPPS). To check whether the β-lactamases (BLAs) were inhibited, we expressed specific BLAs (TEM-1 and SHV-14) and evaluated the trans-expression through a broth dilution method and an agar dilution method (HT-SPOTi). To further support our claim, we conducted a kinetic analysis of BLAs with the peptides and employed molecular dynamics (MD) simulations of peptides. The individual presence of six histidine-based peptides (TSHLH, ETHIH, ESRLH, ESHIH, ESRIH, and TYHLH) reduced β-lactam resistance in the strains harbouring BLAs. Subsequently, we found that the combinational effect of these peptides and β-lactams sensitised the bacteria towards the β-lactam drugs. We hypothesize that the antimicrobial peptides obtained might be considered among the novel inhibitors that can be used specifically against the Ω-loop of the β-lactamases.