Cargando…
Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning
In this study, the device characteristics of silicon nanowire feedback field-effect transistors were predicted using technology computer-aided design (TCAD)-augmented machine learning (TCAD-ML). The full current–voltage (I-V) curves in forward and reverse voltage sweeps were predicted well, with hig...
Autores principales: | Woo, Sola, Jeon, Juhee, Kim, Sangsig |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051704/ https://www.ncbi.nlm.nih.gov/pubmed/36984910 http://dx.doi.org/10.3390/mi14030504 |
Ejemplares similares
-
Logic and memory functions of an inverter comprising reconfigurable double gated feedback field effect transistors
por: Jeon, Juhee, et al.
Publicado: (2022) -
Disturbance Characteristics of 1T DRAM Arrays Consisting of Feedback Field-Effect Transistors
por: Jeon, Juhee, et al.
Publicado: (2023) -
NAND and NOR logic-in-memory comprising silicon nanowire feedback field-effect transistors
por: Yang, Yejin, et al.
Publicado: (2022) -
Investigation of Monolithic 3D Integrated Circuit Inverter with Feedback Field Effect Transistors Using TCAD Simulation
por: Oh, Jong Hyeok, et al.
Publicado: (2020) -
Simulation studies on electrical characteristics of silicon nanowire feedback field-effect transistors with interface trap charges
por: Yang, Yejin, et al.
Publicado: (2021)