Cargando…
Transfer learning identifies sequence determinants of cell-type specific regulatory element accessibility
Dysfunction of regulatory elements through genetic variants is a central mechanism in the pathogenesis of disease. To better understand disease etiology, there is consequently a need to understand how DNA encodes regulatory activity. Deep learning methods show great promise for modeling of biomolecu...
Autores principales: | Salvatore, Marco, Horlacher, Marc, Marsico, Annalisa, Winther, Ole, Andersson, Robin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052367/ https://www.ncbi.nlm.nih.gov/pubmed/37007588 http://dx.doi.org/10.1093/nargab/lqad026 |
Ejemplares similares
-
A computational map of the human-SARS-CoV-2 protein–RNA interactome predicted at single-nucleotide resolution
por: Horlacher, Marc, et al.
Publicado: (2023) -
Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning
por: Horlacher, Marc, et al.
Publicado: (2023) -
GraphPart: homology partitioning for biological sequence analysis
por: Teufel, Felix, et al.
Publicado: (2023) -
The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression
por: Ruiz, José L, et al.
Publicado: (2021) -
Quantifying the tissue-specific regulatory information within enhancer DNA sequences
por: Benner, Philipp, et al.
Publicado: (2021)