Cargando…

PTA-Det: Point Transformer Associating Point Cloud and Image for 3D Object Detection

In autonomous driving, 3D object detection based on multi-modal data has become an indispensable perceptual approach when facing complex environments around the vehicle. During multi-modal detection, LiDAR and a camera are simultaneously applied for capturing and modeling. However, due to the intrin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Rui, Zhao, Tianyun, Zhao, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052646/
https://www.ncbi.nlm.nih.gov/pubmed/36991940
http://dx.doi.org/10.3390/s23063229
Descripción
Sumario:In autonomous driving, 3D object detection based on multi-modal data has become an indispensable perceptual approach when facing complex environments around the vehicle. During multi-modal detection, LiDAR and a camera are simultaneously applied for capturing and modeling. However, due to the intrinsic discrepancies between the LiDAR point and camera image, the fusion of the data for object detection encounters a series of problems, which results in most multi-modal detection methods performing worse than LiDAR-only methods. In this investigation, we propose a method named PTA-Det to improve the performance of multi-modal detection. Accompanied by PTA-Det, a Pseudo Point Cloud Generation Network is proposed, which can represent the textural and semantic features of keypoints in the image by pseudo points. Thereafter, through a transformer-based Point Fusion Transition (PFT) module, the features of LiDAR points and pseudo points from an image can be deeply fused under a unified point-based form. The combination of these modules can overcome the main obstacle of cross-modal feature fusion and achieves a complementary and discriminative representation for proposal generation. Extensive experiments on KITTI dataset support the effectiveness of PTA-Det, achieving a mAP (mean average precision) of 77.88% on the car category with relatively few LiDAR input points.