Cargando…
Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances
A distributed GM-CPHD filter based on parallel inverse covariance crossover is designed to attenuate the local filtering and uncertain time-varying noise affecting the accuracy of sensor signals. First, the GM-CPHD filter is identified as the module for subsystem filtering and estimation due to its...
Autores principales: | Wang, Liu, Chen, Guifen, Chen, Guangjiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053049/ https://www.ncbi.nlm.nih.gov/pubmed/36991631 http://dx.doi.org/10.3390/s23062921 |
Ejemplares similares
-
Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter
por: Si, Weijian, et al.
Publicado: (2016) -
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
por: Yang, Feng, et al.
Publicado: (2016) -
Quantum private set intersection cardinality based on bloom filter
por: Liu, Bai, et al.
Publicado: (2021) -
Matroid bases with cardinality constraints on the intersection
por: Lendl, Stefan, et al.
Publicado: (2021) -
A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers
por: Liu, Zhuowei, et al.
Publicado: (2018)