Cargando…
Femtosecond Laser Processing Assisted SiC High-Temperature Pressure Sensor Fabrication and Performance Test
Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054109/ https://www.ncbi.nlm.nih.gov/pubmed/36984993 http://dx.doi.org/10.3390/mi14030587 |
Sumario: | Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and electrical properties at high temperatures. However, SiC is difficult to process which hinders its application as a high-temperature pressure sensor. This study proposes a piezoresistive SiC pressure sensor fabrication method to overcome the difficulties in SiC processing, especially deep etching. The sensor was processed by a combination of ICP (inductive coupled plasma) dry etching, high-temperature rapid annealing and femtosecond laser deep etching. Static and dynamic calibration tests show that the accuracy error of the fabricated sensor can reach 0.33%FS, and the dynamic signal response time is 1.2 μs. High and low temperature test results show that the developed sensor is able to work at temperatures from −50 °C to 600 °C, which demonstrates the feasibility of the proposed sensor fabrication method. |
---|